DOI QR코드

DOI QR Code

Development of an Automated Synthesizer for the Routine Production of Ga-68 Radiopharmaceuticals

임상용 Ga-68 표지 방사성의약품의 합성을 위한 자동합성장치 개발

  • Jun Young PARK (Nuclear Medicine Laboratory, Yonsei University Severance Hospital) ;
  • Jeongmin SON (Nuclear Medicine Laboratory, Yonsei University Severance Hospital) ;
  • Won Jun KANG (Department of Nuclear Medicine, Yonsei University Severance Hospital)
  • 박준영 (연세대학교 세브란스병원 핵의학검사실) ;
  • 손정민 (연세대학교 세브란스병원 핵의학검사실) ;
  • 강원준 (연세대학교 세브란스병원 핵의학과)
  • Received : 2023.08.26
  • Accepted : 2023.09.20
  • Published : 2023.12.31

Abstract

The germanium-68/gallium-68 (68Ge/68Ga) generator has high spatial utilization and requires little maintenance, making it economical and easy to produce. Thus, the frequency of use of 68Ga radiopharmaceuticals is rapidly increasing worldwide. Therefore, this study attempted to develop an automated synthesizer for the routine clinical application of 68Ga radiopharmaceuticals. The automated synthesizer was based on a fixed tubing system and the structure was designed after adjusting the position of the parts to reflect the synthesis method. Using various components that can be supplied in Korea, the automated synthesizer was manufactured at a much lower price cost than that of a commercialized automated synthesizer sold by companies. 68Ga-DOTA-[Tyr3]-octreotide (68Ga-DOTATOC) was synthesized to evaluate the performance of the automated synthesizer. 68Ga-DOTATOC could be synthesized with about 65% of non-decay corrected yield, and the synthesized 68Ga-DOTATOC met all quality control standards. We have synthesized 68Ga-DOTATOC more than 100 times, and only faced a few problems caused by mechanical errors. In this study, we successfully developed a simple automated synthesizer for 68Ga radiopharmaceuticals with high reproducibility. As various 68Ga radiopharmaceuticals have recently been developed, it is expected that the automated synthesizer developed in this study will be useful for routine clinical use.

Germanium-68/gallium-68 (68Ge/68Ga) 제너레이터는 의료용가속기에 비해 크기가 작아 공간적 활용도가 높고 유지비가 저렴하고, Ga-68 표지 방사성의약품의 생산방식이 간편하기 때문에 세계적으로 사용빈도가 급격히 증가하고 있다. 이에 본 연구에서는 제작비용이 낮으며 사용이 쉽고 유지보수가 용이한 Ga-68 표지 방사성의약품 전용 자동합성장치를 개발하고자 하였다. 본 연구에서 개발한 자동합성장치에 사용된 부품들은 대부분 국내에서 생산된 제품들을 사용하여 생산 단가를 낮추었고, 자체 구동프로그램을 개발하여 사용자 편의성을 높였다. 또한, 자동합성장치의 시스템 평가를 통해 작동에 이상이 없음을 확인하였고, 68Ga-DOTA-[Tyr3]-octreotide 합성 프로그램을 사용하여 조제 시 안정된 표지 수율과 임상적용 기준을 만족하는 품질관리 결과를 획득하였다. 최근 다양한 Ga-68 표지 방사성 의약품이 개발되고 있어 본 연구를 통해 개발한 방사성의약품 전용 자동합성장치는 추후 보다 유용하게 사용될 것으로 사료된다.

Keywords

References

  1. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38:199-208. https://doi.org/10.1053/j.semnuclmed.2008.02.001
  2. Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imaging. 1995;13:1119-1124. https://doi.org/10.1016/0730-725x(95)02021-k
  3. Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45:e740-e760. https://doi.org/10.1002/mp.13058
  4. Voss SD. SPECT/CT, PET/CT and PET/MRI: oncologic and infectious applications and protocol considerations. Pediatr Radiol. 2023;53:1443-1453. https://doi.org/10.1007/s00247-023-05597-7
  5. Berger A. How does it work? Positron emission tomography. BMJ. 2003;326:1449. https://doi.org/10.1136/bmj.326.7404.1449
  6. Shukla AK, Kumar U. Positron emission tomography: an overview. J Med Phys. 2006;31:13-21. https://doi.org/10.4103/0971-6203.25665
  7. Mason C, Gimblet GR, Lapi SE, Lewis JS. Novel tracers and radionuclides in PET imaging. Radiol Clin North Am. 2021;59:887-918. https://doi.org/10.1016/j.rcl.2021.05.012
  8. Lau J, Rousseau E, Kwon D, Lin KS, Benard F, Chen X. Insight into the development of PET radiopharmaceuticals for oncology. Cancers (Basel). 2020;12:1312. https://doi.org/10.3390/cancers12051312
  9. Zhu J, Song X, Zhang J. Development of amino acid-based radiopharmaceuticals for tumor imaging. Mini Rev Med Chem. 2018; 18:561-583. https://doi.org/10.2174/1389557516666160428115446
  10. Lin M, Paolillo V, Le DB, Macapinlac H, Ravizzini GC. Monoclonal antibody based radiopharmaceuticals for imaging and therapy. Curr Probl Cancer. 2021;45:100796. https://doi.org/10.1016/j.currproblcancer.2021.100796
  11. Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun. 2023;14:3257. https://doi.org/10.1038/s41467-023-36377-4
  12. Wang Y, Chen D, Augusto RDS, Liang J, Qin Z, Liu J, et al. Production review of accelerator-based medical isotopes. Molecules. 2022;27:5294. https://doi.org/10.3390/molecules27165294
  13. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2013;4:47-80. https://doi.org/10.7150/thno.7447
  14. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741-1748. https://doi.org/10.2967/jnumed.107.040378
  15. Nelson BJB, Andersson JD, Wuest F, Spreckelmeyer S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm Chem. 2022;7:27. https://doi.org/10.1186/s41181-022-00180-1
  16. Velikyan I. 68Ga-based radiopharmaceuticals: production and application relationship. Molecules. 2015;20:12913-12943. https://doi.org/10.3390/molecules200712913
  17. Banerjee SR, Pomper MG. Clinical applications of Gallium-68. Appl Radiat Isot. 2013;76:2-13. https://doi.org/10.1016/j.apradiso.2013.01.039
  18. Kang KW. Functional imaging and peptide receptor radionuclide therapy for pancreatic neuroendocrine tumor. Korean J Pancreas Biliary Tract. 2021;26:10-14. https://doi.org/10.15279/kpba.2021.26.1.10
  19. Hong JH. An update of prostate-specific membrane antigen theranostics in prostate cancer. Korean J Urol Oncol. 2022;20:207-222. http://doi.org/10.22465/kjuo.2022.20.4.207
  20. Shetty D, Lee YS, Jeong JM. (68)Ga-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging. 2010;44:233-240. https://doi.org/10.1007/s13139-010-0056-6
  21. Lepareur N. Cold kit labeling: the future of 68Ga radiopharmaceuticals? Front Med (Lausanne). 2022;9:812050. https://doi.org/10.3389/fmed.2022.812050
  22. Kumar K. The current status of the production and supply of gallium-68. Cancer Biother Radiopharm. 2020;35:163-166. https://doi.org/10.1089/cbr.2019.3301
  23. Seemann J, Waldron B, Parker D, Roesch F. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharm Chem. 2017;1:4. https://doi.org/10.1186/s41181-016-0007-3 Erratum in: EJNMMI Radiopharm Chem. 2018;3:13.
  24. Elsinga P, Todde S, Penuelas I, Meyer G, Farstad B, Faivre-Chauvet A, et al.; Radiopharmacy Committee of the EANM. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2010;37:1049-1062. https://doi.org/10.1007/s00259-010-1407-3