DOI QR코드

DOI QR Code

Examining the Adoption of AI based Banking Chatbots: A Task Technology Fit and Network Externalities Perspective

  • Received : 2023.04.11
  • Accepted : 2023.06.07
  • Published : 2023.09.30

Abstract

The objective of this study is to provide a deeper understanding of the factors that lead to the development and adoption of AI-based chatbots. We analyze the structural relationship between the organizational (externalities), systematic (fit), and the consumer-related (psychological) factors and their role in the adoption of AI-based chatbots. Founded on the theories of task-technology fit and network externalities, we present a conceptual model overlooking common perception-based theories (e.g., Technology Acceptance Model). We collected 380 responses from Indian banking consumers to test the model using the PLS-SEM method. Interestingly, the findings present a positive impact of all factors on consumers' intention to adopt AI-based chatbots. However, the interplays between these factors provide a mixed perspective for literature. Apart from employing a combination of factors that have been used to study technology adoption, our study explores the importance of externalities and their relationship with fit factors, a unique outlook often overlooked by prior research. Moreover, we offer a clear understanding of latent variables such as trust, and the intricacies of their interplays in a novel context. Thereby, the study offers implications for literature and practice, followed by future research directions.

Keywords

References

  1. Adam, M., Wessel, M., and Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427-445.  https://doi.org/10.1007/s12525-020-00414-7
  2. Adil, M., Nasir, M., Sadiq, M., and Bharti, K. (2020). SSTQUAL model: Assessment of ATM service quality in an emerging economy. International Journal of Business Excellence, 22(1), 114-138. https://doi.org/10.1504/IJBEX.2020.109222 
  3. Agarwal, R., and Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204 
  4. Alam, M. Z., Hoque, M. R., Hu, W., and Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128-143.  https://doi.org/10.1016/j.ijinfomgt.2019.04.016
  5. Anil, K., and Misra, A. (2022). Artificial intelligence in Peer-to-peer lending in India: A cross-case analysis. International Journal of Emerging Markets, 17(4), 1085-1106. https://doi.org/10.1108/IJOEM-05-2021-0822 
  6. Ashfaq, M., Yun, J., Yu, S., and Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users' satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. 
  7. Bandura, A., Freeman, W. H., and Lightsey, R. (1997). Self-efficacy: The exercise of control. Journal of Cognitive Psychotherapy, 13, 158-166. https://doi.org/10.1891/0889-8391.13.2.158 
  8. Boucher, E. M., Harake, N. R., Ward, Sarah, H. E. Stoeckl, E., Vargas, J., Minkel, J., Parks, A. C. and Zilca, R. (2021). Artificially intelligent chatbots in digital mental health interventions: a review. Expert Review of Medical Devices, 18(1), 37-49  https://doi.org/10.1080/17434440.2021.2013200
  9. Capello, R. (1995). Network externalities: Towards a taxonomy of the concept and a theory of their effects on the performance of firms and regions. In Technological Change, Economic Development and Space (pp. 208-237). 
  10. Chen, I. S. (2017). Computer self-efficacy, learning performance, and the mediating role of learning engagement. Computers in Human Behavior, 72, 362-370. https://doi.org/10.1016/j.chb.2017.02.059 
  11. Chen, Q., Gong, Y., Lu, Y., and Tang, J. (2022). Classifying and measuring the service quality of AI chatbot in frontline service. Journal of Business Research, 145, 552-568. https://doi.org/10.1016/j.jbusres.2022.02.088 
  12. Cheng, Y. M. (2021). Will robo-advisors continue? Roles of task-technology fit, network externalities, gratifications and flow experience in facilitating continuance intention. Kybernetes, 50(6), 1751-1783. https://doi.org/10.1108/K-03-2020-0185 
  13. Choi, J. P., and Stefanadis, C. (2022). Network externalities, dominant value margins, and equilibrium uniqueness. In International Economic Review (forthcoming). 
  14. Chun, S. Y., and Hahn, M. (2007). Network externality and future usage of Internet services. Internet Research, 17(2), 156-168.  https://doi.org/10.1108/10662240710737013
  15. Coeurderoy, R., Guilmot, N., and Vas, A. (2014). Explaining factors affecting technological change adoption: A survival analysis of an information system implementation. Management Decision, 52(6), 1082-1100.  https://doi.org/10.1108/MD-10-2013-0540
  16. Compeau, D. R., and Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.  https://doi.org/10.2307/249688
  17. Dehghani, M. (2018). Exploring the motivational factors on continuous usage intention of smartwatches among actual users. Behaviour & Information Technology, 37(2), 145-158.  https://doi.org/10.1080/0144929X.2018.1424246
  18. Deva, P. (2022). India set to become the world's third-largest economy and stock market by 2030: Morgan Stanley. LiveMint. Retrieved from https://mintgenie.livemint.com/news/markets/india-set-to-become-the-world-s-third-largest-economyand-stock-market-by-2030-morgan-stanley-151667373716980 
  19. Dijkstra, T. K., and Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297-316.  https://doi.org/10.25300/MISQ/2015/39.2.02
  20. Dogra, N., and Adil, M. (2022). Should we or should we not? Examining travelers' perceived privacy, perceived security and actual behavior in online travel purchases. Journal of Vacation Marketing, 13567667221122103. https://doi.org/10.1177/13567667221122103 
  21. Dogra, N., Adil, M., Sadiq, M., Dash, G., and Paul, J. (2023). Unraveling customer repurchase intention in OFDL context: An investigation using a hybrid technique of SEM and fsQCA. Journal of Retailing and Consumer Services, 72, 103281. 
  22. Donaldson, L. (2001). The Contingency Theory of Organizations. London: Sage. 
  23. Dychtwald, Z. (2021). Understanding China's Young Consumers, Harvard Business Review. Retrieved from https://hbr.org/2021/06/understanding-chinas-young-consumers 
  24. Enholm, I. M., Papagiannidis, E., Mikalef, P., and Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709-1734.  https://doi.org/10.1007/s10796-021-10186-w
  25. Eren, B. A. (2021). Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey. International Journal of Bank Marketing, 39(2), 294-311. https://doi.org/10.1108/IJBM-02-2020-0056 
  26. Erskine, M. A., Khojah, M., and McDaniel, A. E. (2019). Location selection using heat maps: Relative advantage, task-technology fit, and decision-making performance. Computers in Human Behavior, 101, 151-162.  https://doi.org/10.1016/j.chb.2019.07.014
  27. Faqih, K. M. S., and Jaradat, M. I. R. M. (2021). Integrating TTF and UTAUT2 theories to investigate the adoption of augmented reality technology in education: Perspective from a developing country. Technology in Society, 67, 101787. 
  28. Fernandes, T., and Oliveira, E. (2021). Understanding consumers' acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption. Journal of Business Research, 122, 180-191. https://doi.org/10.1016/j.jbusres.2020.08.058 
  29. Fornell, C., and Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440-452. https://doi.org/10.1177/002224378201900406 
  30. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104 
  31. Franque, F. B., Oliveira, T., and Tam, C. (2022). Continuance intention of mobile payment: TTF model with Trust in an African context. Information Systems Frontiers, 25(2), 1-19. https://doi.org/10.1007/s10796-022-10263-8 
  32. Furneaux, B. (2012). Task-technology fit theory: A survey and synopsis of the literature. Information Systems Theory, 87-106. 
  33. Goodhue, D. L., and Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.  https://doi.org/10.2307/249689
  34. Gu, V. C., and Black, K. (2020). Integration of TTF and network externalities for RFID adoption in healthcare industry. International Journal of Productivity and Performance Management, 70(1), 109-129.  https://doi.org/10.1108/IJPPM-11-2018-0418
  35. Gu, V. C., Schniederjans, M. J., and Cao, Q. (2015). Diffusion of innovation: Customer relationship management adoption in supply chain organizations. International Journal of Quality Innovation, 1(6), 1-17.  https://doi.org/10.1186/s40887-015-0006-6
  36. Guzman, I., and Pathania, A. (2016). Chatbots in customer service. Retrieved from http://bit.ly/Accenture-Chatbots-Customer-Service. 
  37. Hair, J. F., Ringle, C. M., and Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.  https://doi.org/10.2753/MTP1069-6679190202
  38. Hentzen, J. K., Hoffmann, A., Dolan, R., and Pala, E. (2021). Artificial intelligence in customer-facing financial services: A systematic literature review and agenda for future research. International Journal of Bank Marketing, 40(6), 1299-1336. https://doi.org /10.1108/IJBM-09-2021-0417 
  39. Howard, M. C., and Rose, J. C. (2019). Refining and extending task-technology fit theory: Creation of two task-technology fit scales and empirical clarification of the construct. Information & Management, 56(6), 103134. 
  40. Hsiao, K. L., and Chen, C. C. (2015). How do we inspire children to learn with e-readers?. Library Hi Tech, 33(4), 584-596.  https://doi.org/10.1108/LHT-04-2015-0038
  41. Hsiao, K. L. (2017). What drives smartwatch adoption intention? Comparing Apple and non-Apple watches. Library Hi Tech, 35(1), 186-206. https://doi.org/10.1108/LHT-09-2016-0105 
  42. Hsu, C. L., and Lin, J. C. C. (2016). An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives. Computers in Human Behavior, 62, 516-527. https://doi.org/10.1016/j.chb.2016.04.023 
  43. Hu, L. T., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118 
  44. Huang, A., Chao, Y., de la Mora Velasco, E., Bilgihan, A., and Wei, W. (2021). When artificial intelligence meets the hospitality and tourism industry: an assessment framework to inform theory and management. Journal of Hospitality and Tourism Insights, 5(5), 1080-1100. https://doi.org/10.1108/JHTI-01-2021-0021 
  45. IMARC Group. (2023, April 27). India artificial intelligence market Expanding at a CAGR of 33.28% during 2023-2028. openPR.com. Retrieved from https://www.openpr.com/news/3032270/india-artificial-intelligence-market-expanding-at-a-cagr 
  46. Jadhav, V. V., and Mahadeokar, R. (2019). The fourth industrial revolution (I4. 0) in India: challenges and opportunities. Management, 6, 105-109. 
  47. Jeyaraj, A. (2022). A meta-regression of tasktechnology fit in information systems research. International Journal of Information Management, 65, 102493. 
  48. Katz, M. L., and Shapiro, C. (1985). Network externalities, competition, and compatibility. The American economic review, 75(3), 424-440. 
  49. Kaur, S., and Arora, S. (2020). Role of perceived risk in online banking and its impact on behavioral intention: Trust as a moderator. Journal of Asia Business Studies, 15(1), 1-30.  https://doi.org/10.1108/JABS-08-2019-0252
  50. Kim, S., Connerton, T. P., and Park, C. (2022). Transforming the automotive retail: Drivers for customers' omnichannel BOPS (Buy Online and Pick up in Store) behavior. Journal of Business Research, 139, 411-425.  https://doi.org/10.1016/j.jbusres.2021.09.070
  51. Klumpp, M. (2018). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics Research and Applications, 21(3), 224-242. https://doi.org/10.1080/13675567. 2017.1384451 
  52. Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1-10.  https://doi.org/10.4018/ijec.2015100101
  53. Kok, J. N., Boers, E. J., Kosters, W. A., Van der Putten, P., and Poel, M. (2009). Artificial intelligence: definition, trends, techniques, and cases. Artificial Intelligence, 1, 270-299. 
  54. Korreck, S. (2019). The Indian startup ecosystem: Drivers, challenges and pillars of support. ORF Occasional Paper, 210. 
  55. Kot, M., and Leszczynski, G. (2022). AI-activated value co-creation. An exploratory study of conversational agents. Industrial Marketing Management, 107, 287-299.  https://doi.org/10.1016/j.indmarman.2022.10.013
  56. Lee, C. C., Cheng, H. K., and Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task-technology fit and individual differences. Decision Support Systems, 43(1), 95-110.  https://doi.org/10.1016/j.dss.2005.05.008
  57. Lee, J. M., and Kim, H. J. (2020). Determinants of adoption and continuance intentions toward Internet-only banks. International Journal of Bank Marketing, 38(4), 843-865.  https://doi.org/10.1108/IJBM-07-2019-0269
  58. Li, B., Wang, X., and Tan, S. C. (2018). What makes MOOC users persist in completing MOOCs? A perspective from network externalities and human factors. Computers in Human Behavior, 85, 385-395.  https://doi.org/10.1016/j.chb.2018.04.028
  59. Ling, E. C., Tussyadiah, I., Tuomi, A., Stienmetz, J., and Ioannou, A. (2021). Factors influencing users' adoption and use of conversational agents: A systematic review. Psychology & Marketing, 38(7), 1031-1051.  https://doi.org/10.1002/mar.21491
  60. Ling, E. C., Tussyadiah, I., Tuomi, A., Stienmetz, J., and Ioannou, A. (2021). Factors influencing users' adoption and use of conversational agents: A systematic review. Psychology & Marketing, 38(7), 1031-1051.  https://doi.org/10.1002/mar.21491
  61. Liu, C., Hung, K., Wang, D., and Wang, S. (2020). Determinants of self-service technology adoption and implementation in hotels: The case of China. Journal of Hospitality Marketing & Management, 29(6), 636-661.  https://doi.org/10.1080/19368623.2020.1689216
  62. Lu, H. P., and Yang, Y. W. (2014). Toward an understanding of the behavioral intention to use a social networking site: An extension of task-technology fit to social-technology fit. Computers in Human Behavior, 34, 323-332.  https://doi.org/10.1016/j.chb.2013.10.020
  63. Magsamen-Conrad, K., and Dillon, J. M. (2020). Mobile technology adoption across the lifespan: A mixed methods investigation to clarify adoption stages, and the influence of diffusion attributes. Computers in Human Behavior, 112, 106456. 
  64. Majumder, S., and Mondal, A. (2021). Are chatbots really useful for human resource management?. International Journal of Speech Technology, 24(4), 969-977.  https://doi.org/10.1007/s10772-021-09834-y
  65. Makki, A. M., Ozturk, A. B., and Singh, D. (2016). Role of risk, self-efficacy, and innovativeness on behavioral intentions for mobile payment systems in the restaurant industry. Journal of Foodservice Business Research, 19(5), 454-473.  https://doi.org/10.1080/15378020.2016.1188646
  66. Meryl, M. (2021). One of The Youngest Populations in the World: India's Most Valuable Asset, Retrieved from https://indbiz.gov.in/one-of-the-youngestpopulations-in-the-world-indias-most-valuable-asset/ 
  67. Mitter, S. (2022, August 24). Rise of deep-tech: India home to 3,000+ AI, Big Data and blockchain start-ups, says NASSCOM. Business Today. Retrieved from https://www.businesstoday.in/latest/corporate/story/rise-of-deep-tech-india-home-to-3000-ai-big-dataand-blockchain-start-ups-says-nasscom-345440-2022-08-24 
  68. Mostafa, R. B., and Kasamani, T. (2021). Antecedents and consequences of chatbot initial trust. European Journal of Marketing (forthcoming). 
  69. Mukhopadhyay, S. (2023, January 18). India has surpassed China to become the most populous country in the world, as per estimates I Mint. LIVEMINT. Retrieved from https://www.live mint.com/news/india/india-has-surpassed-china-to -become-the-most-populous-country-in-the-worldas-per-estimates-11674022881859.html 
  70. Murtarelli, G., Gregory, A., and Romenti, S. (2021). A conversation-based perspective for shaping ethical human-machine interactions: The particular challenge of chatbots. Journal of Business Research, 129, 927-935.  https://doi.org/10.1016/j.jbusres.2020.09.018
  71. Nasir, M., Adil, M., and Kumar, M. (2022). Phobic COVID-19 Disorder Scale: Development, Dimensionality, and Item-Structure Test. International Journal Mental and Health Addiction, 20, 2718-2730.  https://doi.org/10.1007/s11469-021-00544-9
  72. Ogonowski, A., Montandon, A., Botha, E., and Reyneke, M. (2014). Should new online stores invest in social presence elements? The effect of social presence on initial trust formation. Journal of Retailing and Consumer Services, 21(4), 482-491. https://doi.org/10.1016/j.jretconser.2014.03.004 
  73. Ojha, N. P., and Ingilizian, Z. (2020, February 8). How India will consume in 2030: 10 mega trends. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2019/01/10-mega -trends-for-india-in-2030-the-future-of-consumptio n-in-one-of-the-fastest-growing-consumer-markets 
  74. Oliveira, T., Faria, M., Thomas, M. A., and Popovic, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703.  https://doi.org/10.1016/j.ijinfomgt.2014.06.004
  75. Owusu, G. M. Y., Bekoe, R. A., Addo-Yobo, A. A., and Otieku, J. (2021). Mobile banking adoption among the Ghanaian youth. Journal of African Business, 22(3), 339-360.  https://doi.org/10.1080/15228916.2020.1753003
  76. Pal, D., and Patra, S. (2021). University students' perception of video-based learning in times of COVID-19: A TAM/TTF perspective. International Journal of Human-Computer Interaction, 37(10), 903-921.  https://doi.org/10.1080/10447318.2020.1848164
  77. Park, C. W., Kim, D., gook, Cho, S., and Han, H. J. (2018). Adoption of multimedia technology for learning and gender difference. Computers in Human Behavior, 92, 288-296. https://doi.org/10.1016/j.chb. 2018.11.029 
  78. Park, J., Gunn, F., Lee, Y., and Shim, S. (2015). Consumer acceptance of a revolutionary technology-driven product: The role of adoption in the industrial design development. Journal of Retailing and Consumer Services, 26, 115-124.  https://doi.org/10.1016/j.jretconser.2015.05.003
  79. Parra-Lopez, E., Bulchand-Gidumal, J., GutierrezTano, D., and Diaz-Armas, R. (2011). Intentions to use social media in organizing and taking vacation trips. Computers in Human Behavior, 27(2), 640-654.  https://doi.org/10.1016/j.chb.2010.05.022
  80. Patil, P., Tamilmani, K., Rana, N. P., and Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, 102144. 
  81. Pereira, T., Limberger, P. F., and Ardigo, C. M. (2021). The moderating effect of the need for interaction with a service employee on purchase intention in chatbots. Telematics and Informatics Reports, 1, 100003. 
  82. Pillai, R., and Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal, 27(9), 2599-2629  https://doi.org/10.1108/BIJ-04-2020-0186
  83. Pontiggia, A., and Virili, F. (2010). Network effects in technology acceptance: Laboratory experimental evidence. International Journal of Information Management, 30(1), 68-77.  https://doi.org/10.1016/j.ijinfomgt.2009.07.001
  84. Prentice, C., Dominique Lopes, S., and Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29(7), 739-756.  https://doi.org/10.1080/19368623.2020.1722304
  85. Qasim, H., and Abu-Shanab, E. (2016). Drivers of mobile payment acceptance: The impact of network externalities. Information Systems Frontiers, 18(5), 1021-1034.  https://doi.org/10.1007/s10796-015-9598-6
  86. Rafiq, F., Dogra, N., Adil, M., and Wu, J. Z. (2022). Examining consumer's intention to adopt AI-chatbots in tourism using partial least squares structural equation modeling method. Mathematics, 10(13), 2190. https://doi.org/10.3390/math10132190 
  87. Rzepka, C., Berger, B., and Hess, T. (2022). Voice assistant vs. Chatbot-examining the fit between conversational agents' interaction modalities and information search tasks. Information Systems Frontiers, 24(3), 839-856. 
  88. Sadiq, M., Adil, M., and Khan, M. N. (2019). Automated banks' service quality in developing economy: empirical evidences from India. International Journal of Services and Operations Management, 33(3), 331-350. https://doi.org/10.1504/ IJSOM.2019.10022582 
  89. Sadiq, M., and Adil, M. (2021). The mediating role of customer satisfaction and its effect on service quality-customer loyalty link. International Journal of Productivity and Quality Management, 32(4), 520-535. https://doi.org/10.1504/IJPQM.2021.114256 
  90. Sands, S., Ferraro, C., Campbell, C., and Tsao, H. Y. (2020). Managing the human-chatbot divide: how service scripts influence service experience. Journal of Service Management, 32(2), 246-264. 
  91. Sheehan, B. T. (2018). Customer Service Chatbots: Anthropomorphism, Adoption and Word of Mouth (Doctoral dissertation). Queensland University of Technology, Australia. 
  92. Shin, H. H., and Jeong, M. (2022). Redefining luxury service with technology implementation: The impact of technology on guest satisfaction and loyalty in a luxury hotel. International Journal of Contemporary Hospitality Management, 34(4), 1491-1514.  https://doi.org/10.1108/IJCHM-06-2021-0798
  93. Shumanov, M., and Johnson, L. (2021). Making conversations with chatbots more personalized. Computers in Human Behavior, 117, 106627. 
  94. Singh, N., Sinha, N., and Liebana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191-205  https://doi.org/10.1016/j.ijinfomgt.2019.05.022
  95. Suhaili, S. M., Salim, N., and Jambli, M. N. (2021). Service chatbots: A systematic review. Expert Systems with Applications, 184, 115461. 
  96. Syvanen, S., and Valentini, C. (2020). Conversational agents in online organization-stakeholder interactions: A state-of-the-art analysis and implications for further research. Journal of Communication Management, 24(4), 339-362.  https://doi.org/10.1108/JCOM-11-2019-0145
  97. Szymkowiak, A., Melovic, B., Dabic, M., Jeganathan, K., and Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. 
  98. Tam, C., and Oliveira, T. (2016). Performance impact of mobile banking: Using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434-457.  https://doi.org/10.1108/IJBM-11-2014-0169
  99. Thakur, R., Angriawan, A., and Summey, J. H. (2016). Technological opinion leadership: The role of personal innovativeness, gadget love, and technological innovativeness. Journal of Business Research, 69(8), 2764-2773  https://doi.org/10.1016/j.jbusres.2015.11.012
  100. Thormundsson, B. (2022). Chatbot market worldwide 2016 and 2025, Retrieved from https://www.statista.com/statistics/656596/worldw ide-chatbot-market 
  101. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  102. Wang, C., Teo, T. S., and Janssen, M. (2021). Public and private value creation using artificial intelligence: An empirical study of AI voice robot users in Chinese public sector. International Journal of Information Management, 61, 102401. 
  103. Wang, S. L., and Lin, H. I. (2019). Integrating TTF and IDT to evaluate user intention of big data analytics in mobile cloud healthcare system. Behaviour & Information Technology, 38(9), 974-985.  https://doi.org/10.1080/0144929X.2019.1626486
  104. Wang, X., Wong, Y. D., Chen, T., and Yuen, K. F. (2021). Adoption of shopper-facing technologies under social distancing: A conceptualisation and an interplay between task-technology fit and technology trust. Computers in Human Behavior, 124, 106900. 
  105. Wu, B., and Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232.  https://doi.org/10.1016/j.chb.2016.10.028
  106. Wu, J. H., Chen, Y. C., and Lin, L. M. (2007). Empirical evaluation of the revised end user computing acceptance model. Computers in Human Behavior, 23(1), 162-174.  https://doi.org/10.1016/j.chb.2004.04.003
  107. Wu, K., Vassileva, J., and Zhao, Y. (2017). Understanding users' intention to switch personal cloud storage services: Evidence from the Chinese market. Computers in Human Behavior, 68, 300-314.  https://doi.org/10.1016/j.chb.2016.11.039
  108. Wu, X., and Lai, I. K. W. (2021). The acceptance of augmented reality tour app for promoting film-induced tourism: the effect of celebrity involvement and personal innovativeness. Journal of Hospitality and Tourism Technology, 12(3), 454-470.  https://doi.org/10.1108/JHTT-03-2020-0054
  109. Yen, C., and Chiang, M. C. (2021). Trust me, if you can: A study on the factors that influence consumers' purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behaviour & Information Technology, 40(11), 1177-1194.  https://doi.org/10.1080/0144929X.2020.1743362
  110. Yen, D. C., Wu, C. S., Cheng, F. F., and Huang, Y. W. (2010). Determinants of users' intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Computers in Human Behavior, 26(5), 906-915.  https://doi.org/10.1016/j.chb.2010.02.005
  111. Yoo, Y., and Alavi, M. (2001). Media and group cohesion: Relative influences on social presence, task participation, and group consensus. MIS Quarterly, 25(3), 371-390.  https://doi.org/10.2307/3250922
  112. Yoon, S. B., and Cho, E. (2016). Convergence adoption model (CAM) in the context of a smart car service. Computers in Human Behavior, 60, 500-507.  https://doi.org/10.1016/j.chb.2016.02.082
  113. Zhang, C. B., Li, Y. N., Wu, B., and Li, D. J. (2017). How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Computers in Human Behavior, 69, 284-293.  https://doi.org/10.1016/j.chb.2016.11.069
  114. Zhou, L., Gao, J., Li, D., and Shum, H. Y. (2020). The design and implementation of xiaoice, an empathetic social chatbot. Computational Linguistics, 46(1), 53-93.  https://doi.org/10.1162/coli_a_00368
  115. Zhu, Y., Wang, R., and Pu, C. (2022). "I am chatbot, your virtual mental health adviser." What drives citizens' satisfaction and continuance intention toward mental health chatbots during the COVID-19 pandemic? An empirical study in China. Digital Health, 8, 20552076221090031. 
  116. Zigurs, I., and Buckland, B. K. (1998). A theory of task/technology fit and group support systems effectiveness. MIS Quarterly, 22(3), 313-334. https://doi.org/10.2307/249668