DOI QR코드

DOI QR Code

"Does Emotional Intelligence Impact Technology Adoption?" : A study on Adoption of Augmented Reality

  • Abhishek Srivastava (Information Systems, Indian Institute of Management Visakhapatnam) ;
  • Ananya Ray (Information Systems and Business Analytics, Indian Institute of Management Ranchi) ;
  • Arghya Ray (MIS and Analytics, International Management Institute Kolkata) ;
  • Pradip Kumar Bala (Information Systems and Business Analytics, Indian Institute of Management Ranchi) ;
  • Shilpee A Dasgupta (Communications, Indian Institute of Management Ranchi) ;
  • Yogesh K. Dwivedi (Digital Futures for Sustainable Business & Society Research Group School of Management, Swansea University)
  • Received : 2023.01.14
  • Accepted : 2023.05.30
  • Published : 2023.09.30

Abstract

The study makes several contributions to not only the adoption literature by examining the influence of Emotional Intelligence (EI) and Big-Five traits on adoption of Augmented Reality (AR) but also given its utility in both industry and research, it contributes to the interesting inter-disciplinary domain of psychology, information systems, and human behaviour. A quantitative based approach using a sample of 275 respondents was undertaken. It is found that emotional intelligence influence both perceived ease-of-use and perceived usefulness. They in turn influence intention to use. Another important observation is that personality traits (openness and agreeableness) have a significant moderating effect on the relation between attitude and intention to use AR. This research will help academicians and executives working on the adoption of AR in various sectors ranging from retail industry to the education sector. The originality of this study is that it explores the impact of EI on the acceptance of AR and helps in extending the literature in interdisciplinary research.

Keywords

References

  1. Adams, S. L., and Anantatmula, V. (2010). Social and behavioral influences on team process. Project Management Journal, 41(4), 89-98. https://doi.org/10.1002/pmj.20192
  2. AR Reports (2016). Augmented Reality Market Worth 117.40 Billion USD and Virtual Reality Market worth 33.90 Billion USD by 2022. [Online] https://www.linkedin.com/pulse/augmented-reality-market-worth-11740-billion-usd-virtual-samir-mane (accessed 20 September 2020)
  3. Aydin, G. (2019). Do personality traits and shopping motivations affect social commerce adoption intentions? Evidence from an emerging market. Journal of Internet Commerce, 18(4), 428-467. https://doi.org/10.1080/15332861. 2019.1668659
  4. Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., and Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38-52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
  5. Barranis, N. J. (2011). Altering user perceptions of applications: How system design can impact playfulness and anxiety. Library and Information Science. Retrieved from http://hdl.handle.net/2142/24139
  6. Barrick, M. R., Mount, M. K., and Judge, T. A. (2001). Personality and performance at the beginning of the new millennium: What do we know and where do we go next? International Journal of Selection and Assessment, 9(1/2), 9-29. https://doi.org/10.1111/1468-2389.00160
  7. Chamorro-Premuzic, T., Furnham, A., and Lewis, M. (2007). Personality and approaches to learning predict preference for different teaching methods. Learning and Individual Differences, 17(3), 241-250. https://doi.org/10.1016/j.lindif.2006.12.001
  8. Cheng, C. M., and Chen, L. J. (2007). A study on the knowledge sharing of health technology for technological college students' mobile learning. International Journal of Education and Information Technologies, 1(1), 24-29.
  9. Chin, W. W. (2003). Issues and opinions on structural equation modeling. MIS Quarterly, 22(1), 7-16.
  10. Clark, A. M., and Clark, M. T. G. (2016). Pokemon Go and research qualitative, mixed methods research, and the super complexity of interventions. International Journal of Qualitative Methods, 15(1), 1-3. https://doi.org/10.1177/1609406916667765
  11. Compeau, D. R., and Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211. https://doi.org/10.2307/249688
  12. Costa, P. T., and McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual Differences, 13(6), 653-665. https://doi.org/10.1016/0191-8869(92)90236-I
  13. Craig, A. B. (2013). Understanding augmented reality: Concepts and applications. In Morgan Kaufmann (pp. 1-39). MA: Elsevier Inc.
  14. Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). California: SAGE Publications.
  15. Dash, G., and Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/j.techfore.2021.121092
  16. Daugherty, T., Djuric, V., Li, H., and Leckenby, J. (2017). Establishing a paradigm: A systematic analysis of interactive advertising research. Journal of Interactive Advertising, 17(1), 65-78. https://doi.org/10.1080/15252019.2017.1326755
  17. Davis, F. D. (1989). PU, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
  18. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 903-1028. https://doi.org/10.1287/mnsc.35.8.982
  19. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology Banner, 22(14), 1111-1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
  20. Devaraj, S., Easley, R. F., and Crant, J. M. (2008). Research note-how does personality matter? Relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1), 93-105. https://doi.org/10.1287/isre.1070.0153
  21. Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, 41, 417-440. https://doi.org/10.1146/annurev.ps.41.020190.002221
  22. Dishaw, M. T., and Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information and Management, 36(1), 9-21. https://doi.org/10.1016/S0378-7206(98)00101-3
  23. Dwivedi, Y. K., Shareef, M. A., Simintiras, A. C., Lal, B., and Weerakkody, V. (2016). A generalised adoption model for services: A cross-country comparison of mobile health (mhealth). Government Information Quarterly, 33(1), 174-187. https://doi.org/10.1016/j.giq.2015.06.003
  24. Extremera, N., and Fernandez-Berrocal, P. (2005). Perceived emotional intelligence and life satisfaction: Predictive and incremental validity using the Trait Meta-Mood Scale. Personality and Individual Differences, 39(5), 937-948. https://doi.org/10.1016/j.paid.2005.03.012
  25. Fielding, K. S., McDonald, R., and Louis, W. R. (2008). Theory of planned behaviour, identity and intentions to engage in environmental activism. Journal of Environmental Psychology, 28(4), 318-326. https://doi.org/10.1016/j.jenvp.2008.03.003
  26. Fisher, R. (2020). The surprising downsides of empathy, Retrieved from https://www.bbc.com/future/article/20200930-can-empathy-be-bad-for-you
  27. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(3), 39-50. https://doi.org/10.2307/3151312
  28. Fox, E. (2002). Processing emotional facial expressions: The role of anxiety and awareness. Cognitive, Affective, and Behavioral Neuroscience, 2(1), 52-63. https://doi.org/10.3758/cabn.2.1.52
  29. Gartner Article (2016). Hype Cycle for Emerging Technologies, Retrieved from http://www.gartner.com/newsroom/id/3412017
  30. Gefen, D., Straub, D., and Boudreau, M. (2000). Structural equation modeling and regression: guidelines for research practice. Communications of the Association of Information Systems, 4(7), 1-79. https://doi. org/10.17705/1CAIS.00407
  31. George, J. M., and Zhou, J. (2001). When openness to experience and conscientiousness are related to creative behavior: An interactional approach. Journal of Applied Psychology, 86(3), 513-524. https://doi.org/10.1037/0021-9010.86.3.513
  32. Gohm, C. L., Corser, G. C., and Dalsky, D. J. (2005). Emotional intelligence under stress: Useful, unnecessary, or irrelevant? Personality and Individual Differences, 39(6), 1017-1028. https://doi.org/10.1016/j.paid.2005.03.018
  33. Goldberg, L. R. (1990). An alternative "description of personality": The Big-Five factor structure. Journal of Personality and Social Psychology, 59(6), 1216-1229. https://doi.org/10.1037/0022-3514.59.6.1216
  34. Gong, M., Xu, Y., and Yu, Y. (2005). An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education, 15(4), 365-373.
  35. Gupta, S., and Shrivastava, M. (2022). Herding and loss aversion in stock markets: mediating role of fear of missing out (FOMO) in retail investors. International Journal of Emerging Markets, 17(7), 1720-1737. https://doi.org/10.1108/IJOEM-08-2020-0933
  36. Ha, S., and Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571. https://doi.org/10.1016/j.jbusres.2008.06.016
  37. Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2013). Multivariate Data Analysis (7th ed). London: Pearson Education Limited.
  38. Henseler, J., Ringle, C. M., and Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics, and P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277-319). Bingley: Emerald Group Publishing Limited.
  39. Hill, T., Smith, N. D., and Mann, M. F. (1987). Role of efficacy expectations in predicting the decision to use advanced technologies: The case of computers. Journal of Applied Psychology, 72(2), 307-313. https://doi.org/10.1037/0021-9010.72.2.307
  40. Hong, S. J., Thong, J. Y. L., and Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834. https://doi.org/10.1016/j.dss.2006.03.009
  41. Hsu, M. K., Wang, S. W., and Chiu, K. K. (2009). Computer attitude, statistics anxiety and self-efficacy on statistical software adoption behavior: An empirical study of online MBA learners. Computers in Human Behavior, 25(2), 412-420. https://doi.org/10.1016/j.chb.2008.10.003
  42. Huang, T. L., and Liao, S. (2014). A model of acceptance of augmented-reality interactive technology: The moderating role of cognitive innovativeness. Electronic Commerce Research, 15(2), 269-295.
  43. Huang, L., Zhang, J., and Liu, Y. (2017). Antecedents of student MOOC revisit intention: Moderation effect of course difficulty. International Journal of Information Management, 37(2), 84-91. https://doi.org/10.1016/j.ijinfomgt.2016.12.002
  44. Javornik, A. (2016). Augmented reality: Research agenda for studying the impact of its media characteristics on consumer behaviour. Journal of Retailing and Consumer Services, 30, 252-261. https://doi.org/10.1016/j.jretconser.2016.02.004
  45. Jeong, H. I., and Kim, Y. (2017). The acceptance of computer technology by teachers in early childhood education. Interactive Learning Environments, 25(4), 496-512. https://doi.org/10.1080/10494820.2016.1143376
  46. John, O. P. (1990). The "Big Five" factor taxomony: Dimensions of personality in the natural language and questionnaires. In L. A. Pervin (Eds.), Handbook of Personality: Theory and Research (pp. 66-100). New York: Guilford Press.
  47. Jung, T., Chung, N., and Leue, M. C. (2015). The determinants of recommendations to use augmented reality technologies: The case of a Korean theme park. Tourism Management, 49, 75-86. https://doi.org/10.1016/j.tourman.2015.02.013
  48. Jung, T. H., and tom Dieck, M. C. (2017). Augmented reality, virtual reality and 3D printing for the co-creation of value for the visitor experience at cultural heritage places. Journal of Place Management and Development, 10(2), 140-151. https://doi.org/10.1108/JPMD-07-2016-0045
  49. Julier, S., King, R., Colbert, B., Durbin, J., and Rosenblum, L. (1999). The software architecture of a real-time battlefield visualization virtual environment. In Virtual Reality, 1999 Proceedings IEEE (pp. 29-36).
  50. Kang, J. Y. M. (2014). Augmented reality and motion capture apparel e-shopping values and usage intention. International Journal of Clothing Science and Technology, 26(6), 486-499. https://doi.org/10.1108/IJCST-05-2013-0055
  51. Karahanna, E., and Straub, D. W. (1999). The psychological origins of PU and ease-of-use. Information and Management, 35(4), 237-250. https://doi.org/10.1016/S0378-7206(98)00096-2
  52. Keeton, K. E. (2008). An Extension of the UTAUT Model: How Organizational Factors and Individual Differences Influence Technology Acceptance. Texas: University of Houston.
  53. Keil, M., Beranek, P. M., and Konsynski, B. R. (1995). Usefulness and ease of use: field study evidence regarding task considerations. Decision Support Systems, 13(1), 75-91. https://doi.org/10.1016/0167-9236(94)E0032-M
  54. Kim, J., and Forsythe, S. (2008). Adoption of Virtual Try on technology for online apparel shopping. Journal of Interactive Marketing, 22(2), 45-59. https://doi.org/10.1002/dir.20113
  55. Kim, H. B., Kim, T., and Shin, S. W. (2009). Modeling roles of subjective norms and eTrust in customers' acceptance of airline B2C eCommerce websites. Tourism Management, 30(2), 266-277. https://doi.org/10.1016/j.tourman.2008.07.001
  56. Kim, Y., Choi, J., Park, Y., and Yeon, J. (2016). The adoption of mobile payment services for "Fintech". International Journal of Applied Engineering Research, 11(2), 1058-1061.
  57. King, W. R., and He, J. (2006). A meta-analysis of the technology acceptance model. Information and Management, 43(6), 740-755. https://doi.org/10.1016/j.im.2006.05.003
  58. Krevelen, D. V., and Poelman, R. (2017). Augmented Reality: Technologies, Applications, and Limitations. Amsterdam: VU University Amsterdam.
  59. Kulviwat, S., Bruner, G. C., Kumar, A., Nasco, S. A., and Clark, T. (2007). Toward a unified theory of consumer acceptance technology. Psychology and Marketing, 24(12), 1059-1084. https://doi.org/10.1002/mar.20196
  60. Kuo, Y. F., and Yen, S. N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103-110. https://doi.org/10.1016/j.chb.2008.07.007
  61. Kurbanoglu, S. S., Akkoyunlu, B., and Umay, A. (2006). Developing the information literacy self efficacy scale. Journal of Documentation, 62(6), 730-743. https://doi.org/10.1108/00220410610714949
  62. Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. https://doi.org/10.1016/j.elerap.2008.11.006
  63. Legris, P., Ingham, J., and Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information and Management, 40(3), 191-204. https://doi.org/10.1016/S0378-7206(01)00143-4
  64. Lopez-Nicolas, C., Molina-Castillo, F. J., and Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information and Management, 45(6), 359-364. https://doi.org/10.1016/j.im.2008.05.001
  65. Mahapatra, S., and Mahapatra, S. S. (2010). Customer experience management through emotional connection: an Indian perspective. International Journal of Indian Culture and Business Management, 3(3), e.333.
  66. Martinez, C. A., and Cruz, A. B. (2005). Emotion recognition in non-structured utterances for human-robot interaction. In IEEE International Workshop on Robot and Human Interactive Communication.
  67. McCrae, R. R. (1987). Creativity, divergent thinking and openness to experience. Journal of Personality and Social Psychology, 52(6), 1258-1265. https://doi.org/10.1037/0022-3514.52.6.1258
  68. Morrison, S., and Crane, F. G. (2007). Building the service brand by creating and managing an emotional brand experience. Journal of Brand Management, 14(5), 410-421. https://doi.org/10.1057/palgrave.bm.2550080
  69. Mugge, R., Schoormans, J. P. L., and Schifferstein, H. N. J. (2009). Emotional bonding with personalised products. Journal of Engineering Design, 20(5), 467-476. https://doi.org/10.1080/09544820802698550
  70. Muliyani, D., Phua, L. K., Teh, S. Y., and Lim, T. C. (2021). Obstacles to accounting information system performance in Indonesian public sector. Global Business and Management Research, 13(4), 38-49.
  71. Nawi, C. N., Mamun, A. A., Hayat, N., and Seduram, L. (2022). Promoting sustainable financial services through the adoption of ewallet among Malaysian working adults. SAGE Open, 12(1), 1-15.
  72. Parker J. D. A., Taylor G. J., and Bagby R. M. (1993). Alexithymia and the Recognition of Facial Expressions of emotion. Psychotherapy and Psychosomatics, 59(3-4), 197-202. https://doi.org/10.1159/000288664
  73. Payne, S. C., Youngcourt, S. S., and Beaubien, J. M. (2007). Ameta-analytic examination of the goal orientation nomological net. The Journal of Applied Psychology, 92, 128-150. https://doi.org/10.1037/0021-9010.92.1.128
  74. Pedersen, I., and Simcoe, L. (2012). The iron man phenomenon, participatory culture, and future augmented reality technologies. In Proceeding CHI EA '12 CHI '12 Extended Abstracts on Human Factors in Computing Systems (pp. 291-300).
  75. Pessoa, L. (2005). To what extent are emotional visual stimuli processed without attention and awareness? Current Opinion in Neurobiology, 15(2), 188-196. https://doi.org/10.1016/j.conb.2005.03.002
  76. Petrides, K. V., and Furnham, A. (2001). Trait emotional intelligence: Psychometric investigation with reference to established trait taxonomies. European Journal of Personality, 15(6), 425-448. https://doi.org/10.1002/per.416
  77. Petrides, K. V., Frederickson, N., and Furnham, A. (2004). The role of trait emotional intelligence in academic performance and deviant behavior at school. Personality and Individual Differences, 36(2), 277-293. https://doi.org/10.1016/S0191-8869(03)00084-9
  78. Petrides, K. V. and Furnham, A. (2006). The role of trait emotional intelligence in a gender-specific model of organizational variables. Journal of Applied Social Psychology, 36, 552-569. https://doi.org/10.1111/j.0021-9029.2006.00019.x
  79. Petrides, K. V., Pita, R., and Kokkinaki, F. (2010). The location of trait emotional intelligence in personality factor space. British Journal of Psychology, 98(2), 273-289. https://doi.org/10.1348/000712606X120618
  80. Phares, V. (1997). Psychological adjustment, maladjustment, and father-child relationships. In M. E. Lamb (Ed.), The role of the father in child development. Hoboken, NJ, US: John Wiley and Sons Inc.
  81. Preece, J., Rogers, Y., and Sharp, H. (2015). Interaction Design: Beyond Human-Computer Interaction. Wiley Publishing.
  82. Qualter, P., Gardner, K. J., and Whiteley, H. E. (2007). Emotional intelligence: Review of research and educational implications. Pastoral Care in Education: An International Journal of Personal, Social and Emotional Development, 25(1), 11-20. https://doi.org/10.1111/j.1468-0122.2007.00395.x
  83. Ramayah, T., Cheah, J., Chuah, F., Ting, H., and Memon, M. A. (2018). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using SmartPLS3.0: An Updated and Practical Guide to Statistical Analysis (2nd ed.). Kuala Lumpur: Pearson.
  84. Rese, A., Baier, D., Geyer-Schulz, A., and Schreiber, S. (2017). How augmented reality apps are accepted by consumers: A comparative analysis using scales and opinions. Technological Forecasting and Social Change, 124, 306-319. https://doi.org/10.1016/j.techfore.2016.10.010
  85. Rese, A., Schreiber, S., and Baier, D. (2014). Technology acceptance modeling of augmented reality at the point of sale: Can surveys be replaced by an analysis of online reviews? Journal of Retailing and Consumer Services, 21(5), 869-876. https://doi.org/10.1016/j.jretconser.2014.02.011 
  86. Riggio, R. E. (2010). Before Emotional Intelligence: Research on Nonverbal, Emotional, and Social Competences. Industrial and Organizational Psychology, 3(2), 178-182. https://doi.org/10.1111/j.1754-9434.2010.01221.x
  87. Ringle, C. M., Wende, S., and Becker, J. M. (2022). "SmartPLS 4." Oststeinbek: SmartPLS GmbH, Retrieved from http://www.smartpls.com
  88. Rosen, P. A., and Kluemper, D. H. (2008). The impact of the big five personality traits on the acceptance of social networking website. In AMCIS 2008 Proceedings.
  89. Ross, H. F., and Harrison, T. (2016). Augmented reality apparel: An appraisal of consumer knowledge, attitude and behavioral intentions. In 2016 49th Hawaii International Conference on System Sciences (HICSS).
  90. Ruiz-Ariza, A., Casuso, R. A., Suarez-Manzano, S., Martinez-Lopez, E. J. (2018). Effect of augmented reality game Pokemon GO on cognitive performance and emotional intelligence in adolescent young. Computers and Education, 116, 49-63. https://doi.org/10.1016/j.compedu.2017.09.002
  91. Sabi, H. M., Uzoka, F-M. E., Langmia, K., and Njeh, F. N. (2016). Conceptualizing a model for adoption of cloud computing in education. International Journal of Information Management, 36(2), 183-191. https://doi. org/10.1016/j.ijinfomgt.2015.11.010
  92. Saklofske, D. H., Austin, E. J., Rohr, B. A., and Andrews, J. J. W. (2007). Personality, Emotional Intelligence and Exercise. Journal of Health Psychology, 12(6), 937-948. https://doi.org/10.1177/1359105307082458
  93. Salovey, P., Stroud, L. R., Woolery, A., and Epel, E. S. (2002). Perceived emotional intelligence, stress reactivity, and symptom reports: Further explorations using the trait meta-mood scale. Psychology and Health, 17(5), 611-627. https://doi.org/10.1080/08870440290025812
  94. Scholz, J., and Smith, N. A. (2016). Augmented reality: Designing immersive experiences that maximize consumer engagement. Business Horizons, 59(2), 149-161. https://doi.org/10.1016/j.bushor.2015.10.003
  95. Schwartz, A. M. (2011). Augmenting purchase intent: An empirical study on the effects of utilizing augmented reality in online shopping. SSRN Electronic Journal.
  96. Segars, A. H., and Grover, V. (1993). Re-examining perceived ease of use and usefulness: A confirmatory factor analysis. MIS Quarterly, 17(4), 517-525. https://doi.org/10.2307/249590
  97. Shih, Y., and Fan, S. (2013). Adoption of instant messaging by travel agency workers in Taiwan: Integrating technology readiness with the theory of planned behavior. International Journal of Business and Information, 8(1), 120-136.
  98. Sung, J., and Cho, K. (2012). User experiences with augmented reality advertising applications: Focusing on perceived values and telepresence based on the experiential learning theory. In Human Centric Technology and Service in Smart Space (pp. 9-15).
  99. Synodinos, C., Price, D. G., and Bevan-Dye, A. L. (2017). Antecedents of mobile gaming brand loyalty amongst South African generation y students: pilot test results. In The Global Business and Technology Association (pp. 924-931).
  100. Taylor, S., and Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. https://doi.org/10.1287/isre.6.2.144
  101. Terzis, V., Moridis, C. N., and Economides, A. A. (2012). How student's personality traits affect computer based assessment acceptance: Integrating BFI with CBAAM. Computers in Human Behavior, 28, 1985-1996 https://doi.org/10.1016/j.chb.2012.05.019
  102. Teo, A. C., Tan, G. W., Cheah, C.M., Ooi, K. B., and Yew, K. T. (2012). Can the demographic and subjective norms influence the adoption of mobile banking? International Journal of Mobile Communications, 10(6), e.578. https://doi.org/10.1504/IJMC.2012. 049757
  103. Venkatesh, V., and Davis, F. D. (2000). A Theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  104. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872
  105. Watson, D., and Clark, L. A. (1997). Extraversion and Its Positive Emotional Core. San Diego: Academic Press.
  106. Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., and Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18(1), 411-418. https://doi.org/10.1523/JNEUROSCI.18-01-00411.1998
  107. White, B. (2022). Anxiety, Depression, and the Cortisol Awakening Response, Retrieved from https://hormonelab.co.uk/es/blogs/blog/anxiety-depression-and-the-cortisol-awakening-response
  108. Williams, M. D., Dwivedi, Y. K., Lal, B., and Schwarz, A. (2009). Contemporary trends and issues in IT adoption and diffusion research. Journal of Information Technology, 24(1), 1-10. https://doi.org/10.1057/jit.2008.30
  109. Wojciechowski, R., and Cellary, W. (2013). Evaluation of learners' attitude toward learning in ARIES augmented reality environments. Computers and Education, 68(4), 570-585. https://doi.org/10.1016/j.compedu.2013.02.014
  110. Wrzesien, M., Burkhardt, J. M., Raya, M. A., and Botella, C. (2011). Mixing psychology and HCI in evaluation of augmented reality mental health technology. In CHI'11 Extended Abstracts on Human Factors in Computing Systems (pp. 2119-2124).
  111. Wu, W., Lan, L. W., and Lee, Y. T. (2011). Exploring decisive factors affecting an organization's SaaS adoption: A case study. International Journal of Information Management, 31(6), 556-563. https://doi.org/10.1016/j.ijinfomgt.2011.02.007
  112. Wu, J. H., and Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information and Management, 42(5), 719-729. https://doi.org/10.1016/j.im.2004.07.001
  113. Yang, K., and Jolly, L. D. (2009). The effects of consumer perceived value and subjective norm on mobile data service adoption between American and Korean consumers. Journal of Retailing and Consumer Services, 16(6), 502-508. https://doi.org/10.1016/j.jretconser.2009.08.005
  114. Yang, H. D., and Yoo, Y. (2004). It's all about attitude: revisiting the technology acceptance model. Decision Support Systems, 38, 19-31. https://doi.org/10.1016/S0167-9236(03)00062-9
  115. Yaoyuneyong, G., Foster, J., Johnson, E., and Johnson, D. (2016). Augmented reality marketing: Consumer preferences and attitudes toward hypermedia print ads. Journal of Interactive Advertising, 16(1), 16-30. https://doi.org/10.1080/15252019.2015.1125316
  116. Yusoff, Y. M., Muhammad, Z., Zahari, M.S.M., Pasah, E. S. and Robert, E. (2009), Individual differences, perceived ease of use and PU in the e library usage. Computer and Information Science, 2(1), 76-83.
  117. Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., and Nikanfar, A. R. (2015). Design and implementation content validity study: Development of an instrument for measuring Patient-Centered Communication. Journal of Caring Sciences, 4(2), 165-178. https://doi.org/10.15171/jcs.2015.017
  118. Zhang, X., Han, X., Dang, Y., Meng, F., Guo, X., and Lin, J. (2017). User acceptance of mobile health services from users' perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Informatics for Health and Social Care, 42(2), 194-206. https://doi.org/10.1080/17538157.2016.1200053
  119. Zhang, X., and Yuk, H. P. (1998). Determinants of Hong Kong manufacturing investment in China: A survey. Marketing Intelligence and Planning, 16(4), 260-267. https://doi.org/10.1108/02634509810224446
  120. Zhu, D. S., Lin, T. C., and Hsu, Y. C. (2012). Using the technology acceptance model to evaluate user attitude and intention of use for online games. Journal Total Quality Management and Business Excellence, 23(7-8), 965-980. https://doi.org/10.1080/14783363.2012.704269
  121. Ziefle, M. (2002). The influence of user expertise and phone complexity on performance, ease of use and learnability of different mobile phones. Behaviour and Information Technology, 21(5), 303-311.  https://doi.org/10.1080/0144929021000048538