References
- 김석수, "금융 상품 추천에 관련된 빅 데이터 활용을 위한 개발 방법", 한국컴퓨터정보학회 논문지, 제19권, 제8호, 2014, pp. 73-81. https://doi.org/10.9708/jksci.2014.19.8.073
- 김효중, 신우식, 신동훈, 김희웅, 김화경, "고객의 특성 정보를 활용한 화장품 추천시스템 개발", Information Systems Review, Vol.23, No.4, 2021, pp. 69-84. https://doi.org/10.14329/isr.2021.23.4.069
- 방영석, 이동주, 배윤수, "개인화 서비스의 수용에 있어서 인지된 개인화와 이해의 역할", 경영학연구, 제40권, 제2호, 2011, pp. 355-382.
- 배은영, 신오순, "Neural Collaborative Filtering 기반 개인 맞춤형 운동 추천 알고리즘", 한국통신학회 학술대회논문집, 2020, pp. 313-314.
- 송희석, "심층신경망 기반의 뷰티제품 추천시스템", Journal of Information Technology Applications & Management, 제26권, 제6호, 2019, pp. 89-101.
- 원종윤, 이건창, "금융상품의 재무정보 형식에 따른 사용자의 주의할당과 선호도에 관한 실증연구: 아이트래킹 실험을 중심으로", Information Systems Review, 제23권, 제2호, 2021, pp. 1-19. https://doi.org/10.14329/isr.2021.23.2.001
- 이은주, 송재오, 김이나, 유재수, "화장품 추천을 위한 개인의 피부 유형 및 유전자를 이용한 빅데이터 분석 기반 모바일 서비스", 한국콘텐츠학회 종합학술대회 논문집, 2018, pp. 495-496.
- 이재웅, 김영식, 권오병, "비정형 데이터 분석을 통한 금융소비자 유형화 및 그에 따른 금융상품 추천 방법", 한국 IT 서비스학회지, 제15권, 제4호, 2016, pp. 1-24. https://doi.org/10.9716/KITS.2016.15.4.001
- 장예화, 이청용, 최일영, 김재경, "리뷰 데이터 마이닝을 이용한 하이브리드 추천시스템 개발: Amazon Kindle Store 데이터 분석사례", Information Systems Review, 제23권, 제1호, 2021, pp. 155-172. https://doi.org/10.14329/isr.2021.23.1.155
- 최용석, 아이폰과 아이패드 애플의 전략, Initial Communications Corp., 2010.
- Bobadilla, J., F. Ortega, A. Hernando, and A. Gutierrez, "Recommender systems survey", Knowledge-Based Systems, Vol.46, 2013, pp. 109-132. https://doi.org/10.1016/j.knosys.2013.03.012
- Bolton, R. and T. J. Foxon, "A socio-technical perspective on low carbon investment challenges: Insights for UK energy policy", Environmental Innovation and Societal Transitions, Vol.14, 2015, pp. 165-181, Available at https://doi.org/https://doi.org/10.1016/j.eist.2014.07.005.
- Covington, P., J. Adams, and E. Sargin, "Deep neural networks for youtube recommendations", Proceedings of the 10th ACM Conference on Recommender Systems, 2016.
- Cremonesi, P., F. Garzotto, and R. Turrin, "Investigating the persuasion potential of recommender systems from a quality perspective: An empirical study", ACM Transactions on Interactive Intelligent Systems (TiiS), Vol.2, No.2, 2012, pp. 1-41. https://doi.org/10.1145/2209310.2209314
- Cronqvist, H. and S. Siegel, "The genetics of investment biases", Journal of Financial Economics, Vol.113, No.2, 2014, pp. 215-234, Available at https://doi.org/https://doi.org/10.1016/j.jfineco.2014.04.004.
- Gao, C., X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, and D. Jin, "Neural multi-task recommendation from multi-behavior data", 2019 IEEE 35th International Conference on Data Engineering (ICDE), 2019.
- Gholamian, M., M. Fathian, M. Julashokri, and A. Mehrbod, "Improving electronic customers' profile in recommender systems using data mining techniques", Management Science Letters, Vol.1, No.4, 2011, pp. 449-456. https://doi.org/10.5267/j.msl.2011.06.011
- Gigli, A., F. Lillo, and D. Regoli, Recommender Systems for Banking and Financial Services. RecSys Posters, 2017.
- Hall, S., T. J. Foxon, and R. Bolton, "Investing in low-carbon transitions: Energy finance as an adaptive market", Climate Policy, Vol.17, No.3, 2017, pp. 280-298. https://doi.org/10.1080/14693062.2015.1094731
- He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural collaborative filtering", Proceedings of the 26th International Conference on World Wide Web, 2017.
- He, X., X. Du, X. Wang, F. Tian, J. Tang, and T.-S. Chua, "Outer product-based neural collaborative filtering", 2018, arXiv preprint arXiv:1808. 03912.
- Jannach, D., M. Zanker, A. Felfernig, and G. Friedrich, Recommender Systems: An Introduction, Cambridge University Press, 2010.
- Kim, M.-G. and K.-J. Kim, "Recommender systems using SVD with social network information", Journal of Intelligence and Information Systems, Vol.22, No.4, 2016, pp. 1-18. https://doi.org/10.13088/jiis.2016.22.4.001
- Komiak, S. Y. and I. Benbasat, "The effects of personalization and familiarity on trust and adoption of recommendation agents", MIS Quarterly, 2006, pp. 941-960.
- Koren, Y., R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems", Computer, Vol.42, No.8, 2009, pp. 30-37. https://doi.org/10.1109/MC.2009.263
- Matsunami, Y., M. Ueda, and S. Nakajima, "How to find similar users in order to develop a cosmetics recommender system", International MultiConference of Engineers and Computer Scientists, 2017.
- Park, S.-T. and W. Chu, "Pairwise preference regression for cold-start recommendation", Proceedings of the third ACM conference on Recommender systems, 2009.
- Patty, J. C., E. T. Kirana, and M. S. D. K. Giri, "Recommendations system for purchase of cosmetics using content-based filtering", International Journal of Computer Engineering and Information Technology, Vol.10, No.1, 2018, pp. 1-5.
- Persson, P., "Attention manipulation and information overload", Behavioural Public Policy, Vol.2, No.1, 2018, pp. 78-106. https://doi.org/10.1017/bpp.2017.10
- Schafer, J. B., D. Frankowski, J. Herlocker, and S. Sen, "Collaborative filtering recommender systems", In The adaptive web (pp. 291-324), Springer, 2007.
- Su, X. and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques", Advances in Artificial Intelligence, 2009.
- Yim, Y.-J., H.-S. Bae, Y.-J. Jeong, M.-Y. Kim, A. Nasridinov, K. H. Yoo, and J.-E. Hong, "A user driven cosmetic item recommendation system by character recognition", Proceedings of the Korea Information Processing Society Conference, 2016.
- Yoon, J. and S. Joung, "A big data based cosmetic recommendation algorithm", Journal of System and Management Sciences, Vol.10, No.2, 2020, pp. 40-52.
- Zatevakhina, A., N. Dedyukhina, and O. Klioutchnikov, "Recommender systems - The foundation of an intelligent financial platform: Prospects of development", 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), 2019.
- Zhang, S. X., Y. Wang, A. Rauch, and F. Wei, "Unprecedented disruption of lives and work: Health, distress and life satisfaction of working adults in China one month into the COVID-19 outbreak", Psychiatry Research, Vol.288, 2020, pp. 112958, Available at https://doi.org/https://doi.org/10.1016/j.psychres.2020.112958.