DOI QR코드

DOI QR Code

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende (Postgraduate Program of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro) ;
  • Luiz F. Martha (Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro) ;
  • Afonso C. C. Lemonge (Department of Applied and Computational Mechanics - Federal University of Juiz de Fora) ;
  • Patricia H. Hallak (Department of Applied and Computational Mechanics - Federal University of Juiz de Fora) ;
  • Jose P. G. Carvalho (Postgraduate Program of Civil Engineering - Federal University of Rio de Janeiro) ;
  • Julia C. Motta (Postgraduate Program of Civil Engineering - Federal University of Juiz de Fora)
  • Received : 2023.08.16
  • Accepted : 2023.11.23
  • Published : 2023.10.25

Abstract

This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Keywords

Acknowledgement

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brazil (CAPES) - Finance Code 001, and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Grants 308105/2021-4 and 303221/2022-4), and FAPEMIG (Grants TEC PPM-00174-18 and APQ-00869-22).

References

  1. ABNT (1988), NBR 6123: Forcas devidas ao vento em edificacoes, ABNT Editora, Rio de Janeiro, Brasil.
  2. ABNT (2002), NBR 8681: Acoes e seguranca nas estruturas - Procedimento, ABNT Editora, Rio de Janeiro, Brasil.
  3. ABNT (2008), NBR 8800: Projeto de estruturas de aco e de estruturas mistas de aco e concreto de edificios, ABNT Editora, Rio de Janeiro, Brasil.
  4. Akbulut, M., Sarac, A. and Ertas, A.H. (2020), "An investigation of non-linear optimization methods on composite structures under vibration and buckling loads", Adv. Comput. Des., 5(3), 209-231. https://doi.org/10.12989/acd.2017.2.4.313.
  5. ANSI (2016), \textit{AISC 360-16 Specification for Structural Steel Buildings}, AISC, Chicago, U.S.A.
  6. Babaei, M. and Sanaei, E. (2016), "Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization", Front. Struct. Civil Eng., 10(4), 472-480. https://doi.org/10.1007/s11709-016-0368-4.
  7. Baradaran, M. and Madhkhan, M. (2019), "Determination of optimal configuration for mega bracing systems in steel frames using genetic algorithm", KSCE J. Civil Eng., 23(8), 3616-3627. https://doi.org/10.1007/s12205-019-2369-z.
  8. Barraza, M., Bojorquez, E., Fernandez-Gonzalez, E. and Reyes-Salazar, A. (2017), "Multi-objective optimization of structural steel buildings under earthquake loads using nsga-ii and pso", KSCE J. Civil Eng., 21(2), 488-500. https://doi.orh/10.1007/s12205-017-1488-7.
  9. Braga, F., Gigliotti, R. and Laguardia, R. (2019), "Intervention cost optimization of bracing systems with multiperformance criteria'", Eng. Struct., 182, 185-197. https://doi.org/10.1016/j.engstruct.2018.12.034.
  10. Burton, H.V., Lee, J.Y., Moradi, S. and Dastmalchi, S. (2019), "Multi-objective performance-based design optimization of a controlled rocking steel braced frame system", Resil. Struct. Infrastruct., 243-268.
  11. Carvalho, J., Carvalho, E., Vargas, D., Hallak, P., Lima, B. and Lemonge, A. (2021), "Multi-objective optimum design of truss structures using differential evolution algorithms", Comput. Struct., 252, 106544. https://doi.org/10.1016/j.compstruc.2021.106544.
  12. Cascone, F., Faiella, D., Tomei, V., Lima, B. and Mele, E. (2021), "A structural grammar approach for the generative design of diagrid-like structures", Buildings, 11(3), 90. https://doi.org/10.3390/buildings11030090.
  13. Deb, K. (2001), Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Kanpur, UP, India.
  14. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE T. Evolution. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
  15. Do, B. and Ohsaki, M. (2021), "Gaussian mixture model for robust design optimization of planar steel frames", Struct. Multidiscipl. Opt., 63(1), 137-160. https://doi.org/10.1007/s00158-020-02676-3.
  16. Elkassas, E. and Swelem, S. (2012), "Optimization of bracing systems using neural networks", Proceedings of the Eighth International Conference on Engineering Computational Technology, Labuan, August.
  17. Farahmand-Tabar, S. and Ashtari, P. (2020), "Simultaneous size and topology optimization of 3d outrigger-braced tall buildings with inclined belt truss using genetic algorithm", Struct. Des. Tall Special Build., 29(13). https://doi.org/10.1002/tal.1776.
  18. Felippa, C.A. (2004), Introduction to Finite Element Methods, University of Colorado, Boulder, CO, U.S.A.
  19. Ghasemof, A., Mirtaheri, M. and Mohammadi, R.K. (2021), "A new swift algorithm for bi-objective optimum design of steel moment frames'", J. Build. Eng., 39, 102162. https://doi.org/10.1016/j.jobe.2021.102162.
  20. Gholizadeh, S. and Fattahi, F. (2021), "Multi-objective design optimization of steel moment frames considering seismic collapse safety", Eng. Comput., 37(2), 1315-1328. https://doi.org/10.1007/s00366-019-00886-y.
  21. Gholizadeh, S. and Poorhoseini, H. (2016), "Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm", Struct. Multidiscipl. Opt., 54(4), 1011-1029. https://doi.org/10.1007/s00158-016-1461-y.
  22. Gholizadeh, S. and Baghchevan, A. (2017), "Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm", Eng. Comput., 33(4), 1045-1060. https://doi.org/10.1007/s00366-017-0515-0.
  23. Hasancebi, O. (2017), "Cost efficiency analyses of steel frameworks for economical design of multi-storey buildings", J. Constr. Steel Res., 128, 380-396. https://doi.org/10.1016/j.jcsr.2016.09.002.
  24. Ishibuchi, H., Masuda, H., Tanigaki, Y. and Nojima, Y. (2015), "Modified distance calculation in generational distance and inverted generational distance", Proceedings of the Evolutionary Multi-Criterion Optimization: 8th International Conference, Guimaraes, Portugal, March.
  25. Kaveh, A. and Bakhshpoori, T. (2016), "An efficient multi-objective cuckoo search algorithm for design optimization", Adv. Comput. Des., 1(1), 87-103. http://doi.org/10.12989/acd.2016.1.1.087.
  26. Kaveh, A. and Farhoudi, N. (2015), "Layout optimization of braced frames using differential evolution algorithm and dolphin echolocation optimization", Periodica Polytechnica Civil Eng., 59(3), 441-449. https://doi.org/10.3311/PPci.8155.
  27. Kaveh, A. and Ilchi Ghazaan, M. (2016), "Truss optimization with dynamic constraints using UECBO", Adv. Comput. Des., 1(2), 119-138. http://doi.org/10.12989/acd.2016.1.2.119.
  28. Kaveh, A. and Rezaei, M. (2016), "Topology and geometry optimization of different types of domes using ecbo", Adv. Comput. Des., 1(1), 1-25. http://doi.org/10.12989/acd.2016.1.1.001.
  29. Kaveh, A., Vaez, S.R.H., Hosseini, P. and Ezzati, E. (2018), "Layout optimization of planar braced frames using modified dolphin monitoring operator", Periodica Polytechnica Civil Eng., 62(3), 717-731. ttps://doi.org/10.3311/PPci.11654.
  30. Khaledy, N., Habibi, A. and Memarzadeh, P. (2019), "Multi-objective optimisation of steel moment frames subjected to blast", Int. J. Struct.l Eng., 10(1), 77-94. https://doi.org/10.1504/IJSTRUCTE.2019.101436.
  31. Kicinger, R. and Arciszewski, T. (2004), "Multiobjective evolutionary design of steel structures in tall buildings", Proceedings of the AIAA 1st Intelligent Systems Technical Conference, Chicago, U.S.A., September.
  32. Kicinger, R., Obayashi, S. and Arciszewski, T. (2007), "Evolutionary multiobjective optimization of steel structural systems in tall buildings", Proceedings of the Evolutionary Multi-Criterion Optimization 4th International Conference, Matsushima, Japan, March.
  33. Kizilkan, M. (2010), "Investigating the effect of column orientations on minimum weight design of steel frames", Master's thesis, Middle East Technical University, Ancara, Turkey.
  34. Kukkonen, S. and Lampinen, J. (2005), "GDE3: The third evolution step of generalized differential evolution", Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, U.K., September.
  35. Lemonge, A.C. and Barbosa, H.J. (2012), "Design optimization of space framed structures using multiple cardinality constraint", Proceedings of the 3rd International Conference on Engineering Optimization, Rio de Janeiro, Brazil, July.
  36. Li, M., Zhen, L. and Yao, X. (2017), "How to read many-objective solution sets in parallel coordinates [educational forum]", IEEE Comput. Intell. Magazine, 12(4), 88-100. https://doi.org/10.1109/MCI.2017.2742869.
  37. Li, M., Burns, S.A. and Wen, Y.K. (2005), "Multiobjective optimization for performance-based seismic design of steel moment frame structures", Earthq. Eng. Struct. Dyn., 34(3), 289-306. https://doi.org/10.1061/40700(2004)148.
  38. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
  39. Motta, J., Resende, C., Lemonge, A., Hallak, P. and Carvalho, J. (2021), "Optimal orientation of crosssections of columns of 3D steel frames in a single and multi-objective optimization", Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, Brazil, November.
  40. Panagant, N., Bureerat, S. and Tai, K. (2019), "A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables", Struct. Multidiscipl. Opt., 60(5), 1937-1955. https://10.1007/s00158-019-02302-x.
  41. Papadrakakis, M., Lagaros, N. and Plevris, V. (2002), "Multi-objective optimization of skeletal structures under static and seismic loading conditions'", Eng. Opt., 34(6), 645-669. https://doi.org/10.1080/03052150215716.
  42. Parreiras, R. and Vasconcelos, J. (2005), "Decision making in multiobjective optimization problems'", ISE Book Series on Real Word Multi-Objective System Engineering, Nova Science, New York, U.S.A., 1-20.
  43. Parreiras, R. and Vasconcelos, J. (2009), "Decision making in multiobjective optimization aided by the multicriteria tournament decision method", Nonlinear Anal. Theor., 71(12), 191-198. https://doi.org/10.1016/j.na.2008.10.060.
  44. Resende, C., Lemonge, A., Hallack, P., Carvalho, J. P. and Motta, J. (2020), "Global stability and natural frequencies of vibration in multi-objective op-timization of 3D steel frames", Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, Foz do Iguacu, Brazil, November.
  45. Richardson, J.N., Nordenson, G., Laberenne, R., Coelho, R.F. and Adriaenssens, S. (2013), "Flexible optimum design of a bracing system for facade design using multiobjective genetic algorithms", Auto. Constr., 32, 80-87. https://doi.org/10.1016/j.autcon.2012.12.018.
  46. Shen, W., Ohsaki, M. and Yamakawa, M. (2021), "Robust geometry and topology optimization of plane frames using order statistics and force density method with global stability constraint", Int. J. Numer. Methods Eng., 122(14), 3653-3677. https://doi.org/10.1002/nme.6676.
  47. Storn, R. and Price, K. (1995), "Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces", tr-95-012, University of California, Berkeley, CA, U.S.A.
  48. Tejani, G.G., Savsani, V.J., Patel, V.K. and Bureerat, S. (2017), "Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization", Adv. Comput. Des., 2(4), 313-331. https://doi.org/10.12989/acd.2017.2.4.313.
  49. Tomei, V., Grande, E. and Imbimbo, M. (2022), "Design optimization of gridshells equipped with pretensioned rods", J. Build. Eng., 52, 104407. https://doi.org/10.1016/j.jobe.2022.104407.
  50. Tu, X., He, Z. and Huang, G. (2020), "Performance-based multi-objective collaborative optimization of steel frames with fuse-oriented buckling-restrained braces", Struct. Multidiscipl. Opt., 61(1), 365-379. https://doi.org/10.1007/s00158-019-02366-9.
  51. Wansasueb, K., Pholdee, N., Panagant, N. and Bureerat, S. (2022), "Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing", Eng. Comput., 38, 695-713. https://doi.org/10.1007/s00366-020-01077-w.
  52. Yazdi H.M., Sulong, N. and Mosalman, F. (2010), "Fuzzy multi-objective genetic algorithm in determination of optimum mid connection location of off-centre bracing system", Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, August.
  53. Zitzler, E. and Thiele, L. (1999), "Multiobjective evolutionary algorithms: a comparative case study and the strengthpareto approach", IEEE T Evolution. Comput., 3(4), 257-271. https://doi.org/10.1007/BFb0056872.