DOI QR코드

DOI QR Code

초지 바이오매스 부문 온실가스 인벤토리 구축을 위한 국제 동향과 국내 적용 가능성 평가

Verification of International Trends and Applicability in the Republic of Korea for a Greenhouse Gas Inventory in the Grassland Biomass Sector

  • 이슬기 (상지대학교 조경산림학과) ;
  • 이정관 (전남대학교 산림자원학과) ;
  • 김현준 (전남대학교 산림자원학과)
  • Sle-gee Lee (Department of Forest Landscape Architecture, Sangji University) ;
  • Jeong-Gwan Lee (Department of Forest Resources, Chonnam National University) ;
  • Hyun-Jun Kim (Department of Forest Resources, Chonnam National University)
  • 투고 : 2023.10.30
  • 심사 : 2023.12.26
  • 발행 : 2023.12.29

초록

본 연구는 초지 바이오매스 부문에 대한 국제적 경향과 이를 통한 국내 적용 가능성을 검토하기 위해 수행되었다. 초지 분야는 LULUCF 내 타 분야에 비해 상대적으로 연구 수준이 낮은 편으로 UNFCCC에 보고된 각 국가별 NIR을 기준으로 Approach 2 수준의 Tier 1 방법이 가장 높은 빈도로 적용되고 있었다. IPCC 가이드라인의 Tier 1 방법에서 초지 바이오매스 부문은 연 변화량을 0으로 간주하기 때문에 LULUCF 타 분야에 비해 정형화된 기본 체계가 없이 국가 상황에 따른 다양한 산정 방법을 적용하는 특징이 나타났다. 국내 초지 바이오매스에 대한 Tier 2 이상의 방법에 적용 가능한 산정 방법을 항목별로 분류하면, 인간에 의한 초지 이용 유형을 구분하는지, 초지 내 목본 식생을 포함하는지, 재해로 인한 손실량을 산정하는지, 초지 관리 방법에 따른 차이를 적용하는지 여부였다. 각 항목에서 발생하는 유의미한 차이가 국내에 적용할 수 있는지를 확인하기 위하여 국내를 대상으로 현장 조사와 활동 자료 분석을 수행하였다. 현 시점에서 국내에서 확인 가능한 항목은 초지의 정의에 따른 공간 구성과 이용 유형에 따른 탄소량 차이로 나타났다. 연구 결과, 이용 유형에 따라서 방목지, 섭식이 수행된 방목지, 채초지에서 바이오매스 탄소량의 유의미한 차이가 나타났고, 기후대, 토양형에 따른 차이도 존재하고 있었다. 따라서 IPCC 가이드라인의 기후대와 토양형을 기준으로 한 세분류가 국내에서도 타당한 초지 분류 체계로 적용될 수 있는 것으로 분석되었다. 반면, 초지 바이오매스 부문에서 활용 가능한 국가 공간 자료와 현장 자료의 불일치성이 지나치게 높아 전국 단위의 적용은 신뢰도가 낮은 상황이다. 국제 동향에서 나타난 주요 함의를 국내의 상황과 비교하였을 때, 초지 분야에 대한 더 높은 수준의 온실가스 인벤토리 작성을 위해서는 기후대-토양형 유형에 대한 국가고유계수 개발과 더불어 활용 가능한 공간자료의 마련과 이를 뒷받침할 수 있는 정책 및 제도 체계가 시급히 마련되어야 할 것이다.

The grassland section of the greenhouse gas inventory has limitations due to a lack of review and verification of biomass compared to organic carbon in soil while grassland is considered one of the carbon storages in terrestrial ecosystems. Considering the situation at internal and external where the calculation of greenhouse gas inventory is being upgraded to a method with higher scientific accuracy, research on standards and methods for calculating carbon accumulation of grassland biomass is required. The purpose of this study was to identify international trends in the calculation method of the grassland biomass sector that meets the Tier 2 method and to conduct a review of variables applicable to the Republic of Korea. Identify the estimation methods and access levels for grassland biomass through the National Inventory Report in the United Nations Framework Convention on Climate Change and type the main implications derived from overseas cases. And, a field survey was conducted on 28 grasslands in the Republic of Korea to analyse the applicability of major issues. Four major international issues regarding grassland biomass were identified. 1) country-specific coefficients by land use; 2) calculations on woody plants; 3) loss and recovery due to wildfire; 4) amount of change by human activities. As a result of field surveys and analysis of activity data available domestically, it was found that there was a significant difference in the amount of carbon in biomass according to use type classification and climate zone-soil type classification. Therefore, in order to create an inventory of grassland biomass at the Tier 2 level, a policy and institutional system for making activity data should develop country-specific coefficients for climate zones and soil types.

키워드

과제정보

본 연구는 농촌진흥청 신농업기후변화대응체계구축사업(PJ014923022023)의 지원에 의해 이루어진 것임.

참고문헌

  1. Bobbink, R. and Willems, J.H. 1987. Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands: A threat to a species-rich ecosystem. Biological Conservation. 40(4):301-314. https://doi.org/10.1016/0006-3207(87)90122-4
  2. Bu, H.J., Kand, C.H. and Jeong, K.J. 2016. A study on the living conditions of locals through the management of village common pastures and pasturing activities in Gotjawal located in the mid-mountain area of Jeju island. The Korean Association of Regional Geographers. 22(2):353-368.
  3. Choe, H. 2013. Redefining common pool resource and the case of common meadows in Jeju island. Economy and Society. 12-39.
  4. Chou, W.W., Silver, W.L., Jackson, R.D., Thompson, A.W. and Allen-Diaz, B. 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology. 14(6):1382-1394. https://doi.org/10.1111/j.1365-2486.2008.01572.x
  5. Fan, J., Zhong, H., Harris, W., Yu, G., Wang, S., Hu, Z. and Yue, Y. 2008. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Climatic Change. 86:375-396. https://doi.org/10.1007/s10584-007-9316-6
  6. Ghosh, P.K. and Mahanta, S.K. 2014. Carbon sequestration in grassland systems. Range Management and Agroforestry. 35(2):173-181.
  7. Go, E.J. and Oh, C.Y. 2019. Development and research on pottery glaze using soils in Jeju(volcanic ash soils, non-volcanic ash soils). Korea Society of Ceramic Art. 16(3):37-62.
  8. Greenhouse Gas Inventory and Research Center. 2019. National greenhouse gas inventory report of Korea.
  9. Han, S.H., Lee, S.J., Chang, H., Kim, S., Kim, R., Jeon, E.C. and Son, Y. 2017. Priority for developing emission factors and quantitative assessment in the forestry sector. Journal of Climate Change Research. 8(3):239-245. https://doi.org/10.15531/ksccr.2017.8.3.239
  10. Holdridge, L.R. 1967. Life zone ecology. Life Zone Ecology. 
  11. IPCC and Houghton, J.T. 1996. Revised 1996 IPCC guidelines for national greenhouse gas inventories: Greenhouse gas inventory workbook. OECD.
  12. IPCC. 1996. IPCC guidelines for national greenhouse gas inventories. IPCC.
  13. IPCC. 2003. Good practice guidance for land use, land-use change and forestry. In: J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe and F. Wagner (Eds.), Hayama: IPCC/IGES.
  14. IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 4): Agriculture, forestry and other land use. Hayama: IPCC/IGES. p. 83.
  15. IPCC. 2019. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 4): Agriculture, forestry and other land use. IPCC (Advance version). p. 68.
  16. Jabbagy, E.G. and Jackson, R.B. 2000. Below-ground processes and global change. Ecol. Appl. 10:423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  17. Jeong, H.C., Lee, J.S., Choi, E.J., Kim, G.Y., Seo, S.U. and So, K.H. 2014. A comparison of the changes of greenhouse gas emissions to the develop country-specific emission factors and scaling factors in agricultural sector. Journal of Climate Change Research. 5(4):349-357. https://doi.org/10.15531/ksccr.2014.5.4.349
  18. Jung, H.C., Jeon, S.W., Lee, D.K. and Matsuoka, Y. 2003. Evaluation of vegetation adaptability to climate change on the Korean peninsula using forest moving velocity. Journal of Environmental Impact Assessment. 12(5):383-393.
  19. King, K.J., De Ligt, R.M. and Cary, G.J. 2011. Fire and carbon dynamics under climate change in South-eastern Australia: Insights from FullCAM and FIRESCAPE modelling. International Journal of Wildland Fire. 20(4):563-577. https://doi.org/10.1071/WF09073
  20. Lee, G., Lee, W.K., Kim, Y., Jyung, D. and Choi, H. 2019. Establishment of a long-term roadmap for calculating and reducing urban greenhouse gases and development of national land and urban planning systems and platform technologies. Ministry of Land, Infrastructure and Transport.
  21. Lee, S.J., Lim, J.S. and Kang, J.T. 2019. Standard carbon sequestration of major forest tree species (ver. 1.2). National Institute of Forest Science.
  22. Lee, W.K., Son, Y., Ham, B., Cha, S., Ha, R., Park, S., Lee, S., Ko, Y., Kim, H. and Kim, G. 2020. Study on settlement management policy direction to respond to climate change. Ministry of Land, Infrastructure and Transport.
  23. Lee, W.K., Son, Y., Jeon, S., Ham, B., Kim, M., Choi, S., Roh, Y., Song, C., Park, E., Han, S., Kim, S., Chang, H., Kim, H., Kim, J., Hong, M. and Hwang, J. 2018. A study on calculating greenhouse gas statistics in settlements based on land use. Ministry of Land, Infrastructure and Transport.
  24. Ma, W., Yang, Y., He, J., Zeng, H. and Fang, J. 2008. Above-and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences. 51(3):263-270. https://doi.org/10.1007/s11427-008-0029-5
  25. Mcconkey, B., Ogle, S.M., Chirinda, N., Kishimoto, A.W.M., Baldock, J. and Trunov, A. 2019. Grassland. IPCC.
  26. Ministry of Agriculture, Food and Rural Affairs. 2023. 2022 grassland management survey.
  27. Mokany, K., Raison, R.J. and Prokushkin, A.S. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology. 12(1):84-96. https://doi.org/10.1111/j.1365-2486.2005.001043.x
  28. Park, J.W., Na, H.S. and Yim, J.S. 2017. Comparison of Lan-Use change assessment methods for greenhouse gas inventory in land sector. Journal of Climate Change Research. 8(4):329-337. https://doi.org/10.15531/ksccr.2017.8.4.329
  29. Park, S.J., Lee, C.H. and Kim, M.S. 2018. The analysis of Greenhouse Gases Emission of cropland sector applying the 2006 IPCC guideline. Journal of Climate Change Research. 9(4):445-452. https://doi.org/10.15531/KSCCR.2018.9.4.445
  30. Park, S.J., Lee, C.H., Kim, M.S., Yun, S.G., Kim, Y.H. and Ko, B.G. 2016. Calculation of GHGs emission from LULUCF-cropland sector in South Korea. Korean Journal of Soil Science and Fertilizer. 49(6):826-831. https://doi.org/10.7745/KJSSF.2016.49.6.826
  31. Park, S.J., Reinbergs, E. and Song, L.S.P. 1977. Grain yield and its components in spring barley under row and hill plot conditions. Euphytica. 26:521-526. https://doi.org/10.1007/BF00021677
  32. Peichl, M., Leava, N.A. and Kiely, G. 2012. Above-and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland. Plant and Soil. 350:281-296. https://doi.org/10.1007/s11104-011-0905-9
  33. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., ... and Wagner, F. 2003. Good practice guidance for land use, land-use change and forestry. Good Practice Guidance for Land Use, Land-Use Change and Forestry.
  34. Richards, G.P. and Evans, D.M. 2004. Development of a carbon accounting model (FullCAM Vers. 1.0) for the Australian continent. Australian Forestry. 67(4):277-283. https://doi.org/10.1080/00049158.2004.10674947
  35. Rural Development Administration of Korea. 2011. Taxonomical classification of Korean soils.
  36. Seo, S. 1990. Effect of grazing intensity during mid-summer season on the grass regrowth, utilization efficiency and botanical composition in pasture. Korean Society of Animal Science and Technology. 32(5):291-295.
  37. Seo, S., Shine, J.S. and Lee, J.K. 1996. Effect of grazing stage and intensity on the forage production and nutritive value in Orchargrass dominant pasture. The Korean Society of Grassland and Forage Science. 16(1):53-60.
  38. Seong, H.J., Jang, S.Y., Oh, M.R., Tang, Y.J., Ding, Y.L., Kim, S.W., Choi, G.J., Jeon, B.T. and Moon, S.H. 2016. Changes in feed value, forage productivity, and grazing intensity at mountainous pasture grazed by growing Korean native goat. Korean Society of Grassland and Forage Science. 36(2):109-114. https://doi.org/10.5333/KGFS.2016.36.2.109
  39. Smith, P., Davies, C.A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R.M., McNamara, N.P., Powlson, D., et al. 2012. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: Current capability and future vision. Global Change Biology. 18(7):2089-2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x
  40. Son, Y.M., Lee, K.H., Kim, R.H., Pyo, J., Kim, S.W., Lee, S.J. and Park, H. 2014. Carbon emission factors and biomass allometric equations by species in Korea. National Institute of Forest Science.
  41. St, L. and Wold, S. 1989. Analysis of variance (ANOVA). Chemometrics and Intelligent Laboratory Systems. 6(4):259-272. https://doi.org/10.1016/0169-7439(89)80095-4
  42. Xia, J., Liu, S., Liang, S., Chen, Y., Xu, W. and Yuan, W. 2014. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sensing. 6(3):1783-1802. https://doi.org/10.3390/rs6031783
  43. Yang, Y., Fang, J., Ma, W., Guo, D. and Mohammat, A. 2010. Large-scale pattern of biomass partitioning across China's grasslands. Global Ecology and Biogeography. 19(2):268-277. https://doi.org/10.1111/j.1466-8238.2009.00502.x