DOI QR코드

DOI QR Code

고온 스트레스 환경에 노출된 홀스타인종 젖소의 회복기 면역 변화 특성 규명

The Study of Attributes of Immune Changes during the Convalescence Temperature Period in Holstein Dairy Cows Exposed to High-Temperature Stress

  • 김언태 (국립축산과학원 낙농과) ;
  • 이상진 (부산대학교 동물생명자원과학과) ;
  • 김예은 (부산대학교 동물생명자원과학과) ;
  • 임동현 (국립축산과학원 낙농과) ;
  • 김동현 (국립축산과학원 낙농과) ;
  • 박성민 (국립축산과학원 낙농과) ;
  • 엄준식 (국립축산과학원 낙농과) ;
  • 박지후 (국립축산과학원 낙농과) ;
  • 김상범 (국립축산과학원 낙농과) ;
  • 이성실 (경상국립대학교 응용생명과학부(BK21)) ;
  • 김명후 (부산대학교 동물생명자원과학과)
  • Eun Tae Kim (National Institute of Animal Science, Rural Development Administration) ;
  • Sangjin Lee (Department of Animal Science, Pusan National University) ;
  • Ye Eun Kim (Department of Animal Science, Pusan National University) ;
  • Dong-Hyun Lim (National Institute of Animal Science, Rural Development Administration) ;
  • Dong Hyeon Kim (National Institute of Animal Science, Rural Development Administration) ;
  • Seong Min Park (National Institute of Animal Science, Rural Development Administration) ;
  • Jun Sik Eom (National Institute of Animal Science, Rural Development Administration) ;
  • Ji Hoo Park (National Institute of Animal Science, Rural Development Administration) ;
  • Sang Bum Kim (National Institute of Animal Science, Rural Development Administration) ;
  • Sung Sill Lee (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Myunghoo Kim (Department of Animal Science, Pusan National University)
  • 투고 : 2023.11.15
  • 심사 : 2023.12.01
  • 발행 : 2023.12.29

초록

본 연구는 고온 스트레스에 노출된 홀스타인종 젖소와 이후 회복 기간을 가진 홀스타인종 젖소의 혈액을 분석하여 면역세포의 분포와 기능을 확인하여 고온 스트레스에 대한 시간에 따른 면역변화를 규명하고자 하였다. 실험은 HTP(THI: 76 ± 1.2)와 CTP(THI: 66 ± 1.3)의 국립축산과학원 낙농과에서 사육중인 홀스타인종 젖소를 그룹당 5마리를 사용하여 수행되었다. EDTA tube를 사용하여 혈액을 샘플링하여 CBC 분석과 PBMC를 분리되었다. 분리된 PBMC는 유세포 분석을 실시하였다. CBC 결과는 그룹 간 면역세포 수에 변화가 없었다. PBMC의 Flow Cytometry를 사용한 분석에서는 그룹 간 B cell, Helper T cell, cytotoxic T cell, γδ T cell 간에 유의한 차이가 관찰되지 않았다. 그러나 IL-17a를 생산하는 Th17 cell의 증가가 있었던 반면, CTP 중 Th1 cell은 감소하였다. CTP에서 IL-10의 발현 증가와 HSP70과 HSP90의 발현 감소가 관찰되었다. 결론적으로, IL-10의 발현 증가와 HSP 발현의 감소는 고온 스트레스로부터 약한 회복의 가능성을 시사한다. 그러나 B cell, T cell 및 기타 면역세포의 관찰된 변화가 없다는 것은 CTP 중 고온 스트레스로부터 불완전하게 회복되었음을 나타낸다. 본 연구에서는 적온기 정상수준의 젖소 면역세포 분포에 대한 결과가 부재하여 적온기, 고온기, 회복기의 연결성 있는 비교분석이 부족하다는 한계가 있으며 젖소의 생리대사와 유생산량, 고온 스트레스 바이오마커 등에 대한 분석이 함께 이루어진다면 좀 더 명확한 회복기 대사 및 면역반응에 대한 결과 도출이 가능할 것으로 생각된다.

This study was performed to investigate immune changes by comparing the proportion and function of immune cells in the blood under high-temperature period and convalescence temperature period in Holstein dairy cows. The experiment was conducted using Holstein dairy cows of five animals per group (60 ± 20 months old, 175 ± 78 non-day) from the National Institute of Animal Science at high-temperature period (THI: 76 ± 1.2) and convalescence temperature period (THI: 66 ± 1.3). Complete blood count results showed no change in the number of immune cells between groups. In the analysis using Flow Cytometry of PBMCs, no significant differences were observed among B cells, Helper T cells, cytotoxic T cells, and γδ T cells between groups. However, there was an increase in Th17 cells producing IL-17a, while Th1 cells decreased during the convalescence temperature period. The results of gene expression analysis using qRT-PCR in PBMCs revealed an increase in IL-10 during the convalescence temperature period, while a decrease in HSP70 and HSP90 was observed. In conclusion, the increased expression of IL-10 and the decrease in HSP expression suggest the possibility of a weak recovery from heat stress. However, the lack of observed changes in B cells, T cells, and other immune cells indicates incomplete recovery from heat stress during the convalescence temperature period.

키워드

참고문헌

  1. Abbas, Z., Sammad, A., Hu, L., Fang, H., Xu, Q. and Wang, Y. 2020. Glucose metabolism and dynamics of facilitative glucose transporters (GLUTs) under the influence of heat stress in dairy cattle. Metabolites. 10(8):312. doi:10.3390/metabo10080312
  2. Abeni, F., Calamari, L. and Stefanini, L. 2007. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. International Journal of Biometeorology. 52:87-96. doi:10.1007/s00484-007-0098-3
  3. Alvarez, I., Gutierrez, G., Gammella, M., Martinez, C., Politzki, R., Gonzalez, C., Caviglia, L., Carignano, H., Fondevila, N., Poli, M. and Trono, K. 2013. Evaluation of total white blood cell count as a marker for proviral load of bovine leukemia virus in dairy cattle from herds with a high seroprevalence of antibodies against bovine leukemia virus. American Journal of Veterinary Research. 74(5):744-749. doi:10.2460/ajvr.74.5.744
  4. Amadori, M. and Spelta, C. 2021. The autumn low milk yield syndrome in high genetic merit dairy cattle: The possible role of a dysregulated innate immune response. Animals. 11(2):388. doi:10.3390/ani11020388
  5. Amulic, B., Cazalet, C., Hayes, G.L., Metzler, K.D. and Zychlinsky, A. 2012. Neutrophil function: From mechanisms to disease. Annual Review of Immunology. 30:459-489. doi:10.1146/annurev-immunol-020711-074942
  6. Atrian, P. and Shahryar, H.A. 2012. Heat stress in dairy cows (a review). Research in Zoology. 2(4):31-37. doi:10.5923/j.zoology.20120204.03
  7. Bines, J. and Hart, I. 1982. Metabolic limits to milk production, especially roles of growth hormone and insulin. Journal of Dairy Science. 65(8):1375-1389. doi:10.3168/jds.S0022-0302(82)82358-8
  8. Calder, P.C., Dimitriadis, G. and Newsholme, P. 2007. Glucose metabolism in lymphoid and inflammatory cells and tissues. Current Opinion in Clinical Nutrition and Metabolic Care. 10(4):531-540. doi:10.1097/MCO.0b013e3281e72ad4
  9. Chang-Fung-Martel, J., Harrison, M., Brown, J., Rawnsley, R., Smith, A. and Meinke, H. 2021. Negative relationship between dry matter intake and the temperature-humidity index with increasing heat stress in cattle: A global meta-analysis. International Journal of Biometeorology. 65(12):2099-2109. doi:10.1007/s00484-021-02167-0
  10. Collier, R., Eley, R., Sharma, A., Pereira, R. and Buffington, D. 1981. Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. Journal of Dairy Science. 64(5):844-849. doi:10.3168/jds.S0022-0302(81)82656-2
  11. Collier, R.J., Hall, L.W., Rungruang, S. and Zimbleman, R.B. 2012. Quantifying heat stress and its impact on metabolism and performance. Proceedings of 23rd Annual Florida Ruminant Nutrition Symposium. pp. 74-84.
  12. Dahl, G.E., Tao, S. and Laporta, J. 2020. Heat stress impacts immune status in cows across the life cycle. Frontiers in Veterinary Science. 7:116. doi:10.3389/fvets.2020.00116
  13. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J. and Kumar, R. 2016. Impact of heat stress on health and performance of dairy animals: A review. Veterinary World. 9(3): 260. doi:10.14202/vetworld.2016.260-268
  14. Eom, J.S., Lee, S.J., Lee, S.S., Seo, S., Park, S.M. and Lee, S.S. 2022. Metabolic profiling of rumen fluid and serum in Holstein steers exposure by heat-stressed using proton nuclear magnetic resonance spectroscopy. Journal of the Korea Academia-Industrial cooperation Society. 23(1):489-500. doi:10.5762/KAIS.2022.23.1.489
  15. Fabris, T.F., Laporta, J., Skibiel, A.L., Corra, F.N., Senn, B.D., Wohlgemuth, S.E. and Dahl, G.E. 2019. Effect of heat stress during early, late, and entire dry period on dairy cattle. Journal of Dairy Science. 102(6):5647-5656. doi:10.3168/jds.2018-15721)
  16. Fulkerson, P.C. and Rothenberg, M.E. 2013. Targeting eosinophils in allergy, inflammation and beyond. Nature Reviews Drug Discovery. 12(2):117-129. doi:10.7573/dic.212587
  17. Harris, D., Shrode, R., Rupel, I. and Leighton, R. 1960. A study of solar radiation as related to physiological and production responses of lactating Holstein and Jersey cows. Journal of Dairy Science. 43(9):1255-1262. doi:10.3168/jds.S0022-0302(60)90312-X)
  18. Hirakawa, R., Nurjanah, S., Furukawa, K., Murai, A., Kikusato, M., Nochi, T. and Toyomizu, M. 2020. Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Frontiers in Veterinary Science. 7:46. doi:10.3389/fvets.2020.00046
  19. Jakubzick, C.V., Randolph, G.J. and Henson, P.M. 2017. Monocyte differentiation and antigen-presenting functions. Nature Reviews Immunology. 17(6):349-362. doi:10.1038/nri.2017.28
  20. Johnson, H., Ragsdale, A., Berry, I., Shanklin, M. and Mclarney, S. 1963. Environmental physiology and shelter engineering with special reference to domestic animals. 66. Temperature-humidity effects including influence of acclimation in feed and water consumption of Holstein cattle. Research Bulletin. Missouri Agricultural Experiment Station (846).
  21. Joo, S.S., Lee, S.J., Park, D.S., Kim, D.H., Gu, B.H., Park, Y.J., Rim, C.Y., Kim, M. and Kim, E.T. 2021. Changes in blood metabolites and immune cells in Holstein and Jersey dairy cows by heat stress. Animals. 11(4):974. doi:10.3390/ani11040974
  22. Joo, Y.S., Jung, H.J. and Kim, B.J. 2009. Cluster analysis with Korean weather data: Application of model-based Bayesian clustering method. Journal of the Korean Data and Information Science Society. 20(1):57-64.
  23. Kettle, A.J. and Winterbourn, C.C. 1997. Myeloperoxidase: A key regulator of neutrophil oxidant production. Redox Report. 3(1):3-15. doi:10.1080/13510002.1997.11747085
  24. Kibler, H.H. 1964. Environmental physiology and shelter engineering with special reference to domestic animals. LXVII. termal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. Agricultural Experiment Station. University of Missouri. No. 0862.
  25. Kvidera, S., Horst, E., Abuajamieh, M., Mayorga, E., Fernandez, M.S. and Baumgard, L. 2017. Glucose requirements of an activated immune system in lactating Holstein cows. Journal of Dairy Science. 100(3):2360-2374. doi:10.3168/jds.2016-12001
  26. Lacetera, N., Bernabucci, U., Scalia, D., Basirico, L., Morera, P. and Nardone, A. 2006. Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. Journal of Dairy Science. 89(12):4606-4612. doi:10.3168/jds.S0022-0302(06)72510-3
  27. Mader, T.L., Davis, M. and Brown-Brandl, T. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84(3):712-719. doi:10.2527/2006.843712x
  28. Molinari, P.C., Davidson, B.D., Laporta, J., Dahl, G.E., Sheldon, I.M. and Bromfield, J.J. 2023. Prepartum heat stress in dairy cows increases postpartum inflammatory responses in blood of lactating dairy cows. Journal of Dairy Science. 106(2):1464-1474. doi:10.3168/jds.2022-22405
  29. Nadif, R., Zerimech, F., Bouzigon, E. and Matran, R. 2013. The role of eosinophils and basophils in allergic diseases considering genetic findings. Current Opinion in Allergy and Clinical Immunology. 13(5):507-513. doi:10.1097/ACI.0b013e328364e9c0
  30. Noster, R., De Koning, H., Sallusto, F. and Zielinski, C. 2015. Two types of human Th17 cells with pro-and anti-inflammatory properties and distinct roles in autoinflammation. Pediatric Rheumatology. 13(Suppl 1):O49. doi:10.1186/1546-0096-13-S1-O49
  31. NRC. 1971. A guide to environmental research on animals. Washington, DC. USA: National Academy of Science.
  32. Park, D.S., Gu, B.H., Park, Y.J., Joo, S.S., Lee, S.S., Kim, S.H., Kim, E.T., Kim, D.H., Lee, S.S., Lee, S.J., Kim, B.W. and Kim, M. 2021. Dynamic changes in blood immune cell composition and function in Holstein and Jersey steers in response to heat stress. Cell Stress and Chaperones. 26(4):705-720. doi:10.1007/s12192-021-01216-2
  33. Park, J.H., Choi, H.C., Lee, H.J., Kim, E.T., Son, J.K. and Kim, D.H. 2019. A study on the effect of temperature-humidity index on the respiration rate, rectal temperature and rumination time of lactating Holstein cow in summer season. Journal of the Korea Academia-Industrial Cooperation Society. 20(11):136-143. doi:10.5762/KAIS.2019.20.11.136
  34. Park, S.B., Lim, D.H., Park, S.M., Kim, T.I., Choi, S.H., Kwon, E.G., Seo, J., Seo, S. and Ki, K.S. 2013. Effects of different energy and rumen undegradable protein levels on dairy cow's production performance at mid-lactation period. CNU Journal of Agricultural Science. 40(4):333-338. doi:10.7744/cnujas.2013.40.4.333
  35. Pearce, E.L., Poffenberger, M.C., Chang, C.H. and Jones, R.G. 2013. Fueling immunity: Insights into metabolism and lymphocyte function. Science. 342(6155):1242454. doi:10.1126/science.1242454
  36. Polsky, L. and Von Keyserlingk, M.A. 2017. Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science. 100(11):8645-8657. doi:10.3168/jds.2017-12651
  37. Rhoads, M., Rhoads, R., VanBaale, M., Collier, R., Sanders, S., Weber, W., Crooker, B. and Baumgard, L. 2009. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science. 92(5):1986-1997. doi:10.3168/jds.2008-1641
  38. Schaffer, M. and Barbul, A. 1998. Lymphocyte function in wound healing and following injury. British Journal of Surgery. 85(4):444-460. doi:10.1046/j.1365-2168.1998.00734.x
  39. Seath, D. and Miller, G. 1947. Heat tolerance comparisons between Jersey and Holstein cows. Journal of Animal Science. 6(1):24-34. doi:10.2527/jas1947.6124
  40. St-Pierre, N.R., Cobanov, B. and Schnitkey, G. 2003. Economic losses from heat stress by US livestock industries. Journal of Dairy Science. 86(E. Suppl.):E52-E77. doi:10.3168/jds.S0022-0302(03)74040-5
  41. Thom, E.C. 1959. The discomfort index. Weatherwise. 12(2):57-61. doi:10.1080/00431672.1959.9926960
  42. Vitali, A., Felici, A., Lees, A., Giacinti, G., Maresca, C., Bernabucci, U., Gaughan, J., Nardone, A. and Lacetera, N. 2020. Heat load increases the risk of clinical mastitis in dairy cattle. Journal of Dairy Science. 103(9):8378-8387. doi:10.3168/jds.2019-17748
  43. Welsh, M.D., Cunningham, R.T., Corbett, D.M., Girvin, R.M., McNair, J., Skuce, R.A., Bryson, D. and Pollock, J.M. 2005. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. Immunology. 114(1):101-111. doi:10.1111/j.1365-2567.2004.02003.x
  44. Wheelock, J., Rhoads, R., VanBaale, M., Sanders, S. and Baumgard, L. 2010. Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of Dairy Science. 93(2):644-655. doi:10.3168/jds.2009-2295
  45. Wright, H.L., Moots, R.J., Bucknall, R.C. and Edwards, S.W. 2010. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 49(9):1618-1631. doi:10.1093/rheumatology/keq045
  46. Yadav, B., Singh, G., Verma, A., Dutta, N. and Sejian, V. 2013. Impact of heat stress on rumen functions. Veterinary World. 6(12):992. doi:10.14202/vetworld.2013.992-996
  47. Yousef, M.K. 1985. Stress physiology in livestock. Volume I. Basic principles. CRC Press.
  48. Zhao, F.Q. 2014. Biology of glucose transport in the mammary gland. Journal of Mammary Gland Biology and Neoplasia. 19:3-17. doi:10.1007/s10911-013-9310-8