DOI QR코드

DOI QR Code

Re-estimation of PV hosting capacity by improving parameters for voltage controls of the smart inverter

스마트인버터 전압제어의 파라미터 개선을 통한 PV hosting capacity 재추정 방법

  • Juhyeon Kim (Dept. of Electrical Engineering, KoreaTech) ;
  • Gihwan Yoon (Energy ICT Research Department, Korea Institute of Energy Research) ;
  • Yoondong Sung (Energy ICT Research Department, Korea Institute of Energy Research) ;
  • Hak-Geun Jeong (Energy ICT Research Department, Korea Institute of Energy Research) ;
  • Jongbok Baek (Energy ICT Research Department, Korea Institute of Energy Research) ;
  • Moses Kang (Energy ICT Research Department, Korea Institute of Energy Research)
  • Received : 2023.12.22
  • Accepted : 2023.12.29
  • Published : 2023.12.31

Abstract

This paper proposes two-stage optimization framework to re-estimate the photovoltaic (PV) hosting capacity (HC) by improving parameters for voltage controls of the smart inverter. In the first stage, PV HC is estimated considering Volt-Var (VV) and Volt-Watt (VW) controls, aligning with IEEE Std 1547-2018 guidelines. In the second stage, adjust parameters of VV and VW to improve HC. To investigate the performance of the proposed algorithm, simulations conducted using OpenDSS on an IEEE 37-bus system. The results demonstrate that effectively increases PV HC.

배전계통에 연계되는 분산전원의 수가 증가함에 따라 계통 내 과전압 문제를 일으키지 않고 접속될 수 있는 한계접속용량인 photovoltaic(PV) hosting capacity(HC)를 추정하는 것이 매우 중요해졌다. 이에 본 연구에서는 접속점의 전압을 유지하는 제어를 수행하면서 향상된 hosting capacity를 추정하기 위한 방안을 제안하고 있다. 제안된 방안은 two-stage optimization framework로 구성되며 Stage 1에서 IEEE Std 1547-2018 가이드라인을 이용한 Volt-Var(VV) 및 Volt-Watt(VW) 제어 PV hosting capacity 추정을 수행한다. Stage 2에서는 VV 및 VW의 파라미터를 개선하는 절차를 거쳐 향상된 PV HC 값을 다시 도출해낸다. 제안한 방식의 성능 검증을 위해 IEEE 37-버스 시스템이 OpenDSS를 사용해 테스트되었으며 결과에서 제안된 방식의 적용을 통해 PV hosting capacity가 증가함을 확인하였다.

Keywords

Acknowledgement

This work was supported in part by the Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea (NRF) by the Ministry of Science, ICT, under Grant 2021M1A2A2043890

References

  1. Ministy of Trade, Industy and Energy, "Announces the 10th Basic Plan for Power Supply and Demand," 2023.
  2. J. Jung, A. Onen, R. Arghandeh, R. P. Broadwater, "Coordinated control of automated devices and photovoltaic generators for voltage rise mitigation in power distribution circuits,"Renewable Energy, vol.66, no.1, pp.532-540, 2014. DOI: 10.1016/j.renene.2013.12.039
  3. J. Kim, M. Jeong, J. Heo, D. Lee, M. Ko, S. Kim, "A study on the stability of distribution systems with distributed energy resources," in Proc. 2023 Summer conference of the Korean Institute of Electrical Engineers, pp.478-479, 2023.
  4. R. Tonkoski, D. Turcotte, H. M. E. Tarek, "Impact of high PV Penetration on voltage profiles in residential neighborhoods," IEEE Trans. Sustain. Energy, vol.3, no.3, pp.518-527, 2012. DOI: 10.1109/TSTE.2012.2191425
  5. A. Koirala, T. Van Acker, R. D'hulst, D. Van Hertem, "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, vol. 155, 2022. DOI: 10.1016/j.rser.2021.111899
  6. Y. Cho, K. Baek, E. Lee, J. Kim, "Optimization-based hosting capacity estimation method," in Proc. 2020 Summer conference of the Korean Institute of Electrical Engineers, pp.772-773, 2020.
  7. A. Koirala, T. Van Acker, R. D'hulst, D. Van Hertem, "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, vol.155, no.1, pp.111899-111915, 2021. DOI: 10.1016/j.rser.2021.111899
  8. D. Chathurangi, U. Jayatunga, S. Perera, A.P. Agalgaonkar, T. Siyambalapitiya, "Comparative evaluation of solar PV hosting capacity enhancement using Volt-VAr and Volt-Watt control strategies," Renewable Energy, vol.177, no.1, pp.1063-1075, 2021. DOI: 10.1016/j.renene.2021.06.037
  9. E. Ghiani and F. Pilo, "Smart inverter operation in distribution networks with high penetration of photovoltaic systems," Journal of Modern Power Systems and Clean Energy, vol.3, no.4, pp.504-511, 2015. DOI: 10.1007/s40565-015-0165-4
  10. M. G. Kashani, M. Mobarrez and S. Bhattacharya, "Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems," IEEE Transactions on Industry Applications, vol.55, no.2, pp.4447-4452, 2019. DOI: 10.1109/TIA.2018.2878844
  11. IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power system interfaces, IEEE Standard 1547-2018, 2018.
  12. Grid Connection of Energy Systems Via Inverters Installation Requirements, Standard AS/NZS 4777.1, Standards Australia, 2016.
  13. Grid Connection of Energy Systems Via Inverters Inverter Requirements, Standard AS/NZS 4777.2, Standards Australia, 2015.
  14. Electric Rule No. 21 Generating Facility Interconnections, California Public Utilities Commission, 2018.
  15. F. Ding, B. Mather, "On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement," IEEE Transaction on Sustainable Energy, vol.8, no.3, pp.1010-1020, 2017. DOI: 10.1109/TSTE.2016.2640239
  16. S. Raychaudhuri, "Introduction to Monte Carlo simulation," 2008 Winter Simulation Conference, pp.91-100, 2008. DOI: 10.1109/WSC.2008.4736059
  17. T. S. Ustun, J. Hashimoto and K. Otani, "Impact of smart inverters on feeder hosting capacity of distribution networks," IEEE Access, vol.7, no.1, pp.163526-163536, 2019. DOI: 10.1109/ACCESS.2019.2952569