DOI QR코드

DOI QR Code

Effects of Annealing on Electrical Characteristics of Double-Gated Silicon Nanosheet Feedback Field-Effect Transistors

더블게이트 실리콘 나노시트 피드백 전계효과 트랜지스터의 전기적 특성에 미치는 열처리 효과

  • Hyojoo Heo (Dept. of Electrical Engineering, Korea University) ;
  • Yunwoo Shin (Dept. of Electrical Engineering, Korea University) ;
  • Jaemin Son (Dept. of Electrical Engineering, Korea University) ;
  • Seungho Ryu (Dept. of Semiconductor System Engineering, Korea University) ;
  • Kyoungah Cho (Dept. of Electrical Engineering, Korea University) ;
  • Sangsig Kim (Dept. of Electrical Engineering, Korea University)
  • Received : 2023.10.17
  • Accepted : 2023.11.16
  • Published : 2023.12.31

Abstract

In this study, we examined the effects of annealing on electrical characteristics of double-gated silicon nanosheet (SiNS) feedback field effect transistors (FBFETs). When bias stresses were applied for 1000 s, the double-gated SiNS FBFETs were more affected by positive bias stresses than negative bias stresses regardless of the channel mode owing to the increase of interface traps caused by electrons in the inversion layers. After annealing at 300 ℃ for 10 mins, the devices were completely recovered to their original properties, and the characteristics did not change anymore when bias stresses were applied again for 1000 s.

본 연구에서는 더블게이트 실리콘 나노시트 (SiNS) 피드백 전계효과 트랜지스터(FBFET)의 전기적 특성에 열처리가 미치는 영향을 분석하였다. 1000 초 동안 바이어스 스트레스를 인가했을 때 더블게이트 SiNS FBFET는 inversion layer의 전자에 의한 계면 트랩의 증가로 인해 채널 모드와 무관하게 negative bias stress 보다는 positive bias stress의 영향을 더 많이 받았다. 300 ℃에서 10 분 동안 열처리를 진행한 이후 소자는 원래의 특성을 완전히 회복하였으며 다시 1000 초 동안 바이어스 스트레스를 인가해도 특성이 변하지 않았다.

Keywords

Acknowledgement

This study was partly supported by the Brain Korea 21 Plus Project, a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2020R1A2C3004538, 2022M3I7A3046571), Samsung Electronics (IO201223-08257-01), and a Korea University Grant.

References

  1. S. Cristoloveanu, K. H. Lee, H. Park, and M. S. Parihar, "The concept of electrostatic doping and related devices," Solid-State Electronics, vol.155, pp.32-40, 2019. DOI: 10.1016/j.sse.2019.03.017
  2. H. Kanget al., "Nonvolatile and volatile memory characteristics of a silicon nanowire feedback field-effect transistor with a nitride charge-storage layer," IEEE Transactions on Electron Devices, vol.66, no.8, pp.3342-3348, 2019. DOI: 10.1109/TED.2019.2924961
  3. A. Z. Badwan, Q. Li, and D. E. Ioannou, "On the nature of the memory mechanism of gated-thyristor dynamic-RAM cells," IEEE Journal of the Electron Devices Society, vol.3, no.6, pp.468-471, 2015. DOI: 10.1109/JEDS.2015.2480377
  4. S. Cristoloveanuet al., "A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters," Solid-State Electronics, vol.143, pp.10-19, 2018. DOI: 10.1016/j.sse.2017.11.012
  5. D. Lim, J. Son, K. Cho, and S. Kim, "Quasi-nonvolatile silicon memory device," Advanced Materials Technologies, vol.5, no.12, pp.2000915, 2020. DOI: 10.1002/admt.202000915
  6. J. Cho, D. Lim, S. Woo, K. Cho, and S. Kim, "Static random access memory characteristics of single-gated feedback field-effect transistors," IEEE Transactions on Electron Devices, vol.66, no.1, pp.413-419, 2018. DOI: 10.1109/TED.2018.2881965
  7. S. Han, Y. Kim, D. Son, H. W. Baac, S. M. Won, and C. Shin, "Study on memory characteristics of fin-shaped feedback field effect transistor," Semiconductor Science and Technology, vol.37, no.6, pp.065-006, 2022. DOI: 10.1088/1361-6641/ac643e
  8. Y.-S. Park, S. Woo, D. Lim, K. Cho, and S. Kim, "Integrate-and-fire neuron circuit without external bias voltages," Frontiers in neuroscience, vol.15, pp.644-604, 2021. DOI: 10.3389/fnins.2021.644604
  9. D. Lim, K. Cho, and S. Kim, "Single silicon neuron device enabling neuronal oscillation and stochastic dynamics," IEEE Electron Device Letters, vol.42, no.5, pp.649-652, 2021. DOI: 10.1109/LED.2021.3063954
  10. S. Woo and S. Kim, "Neural oscillation of single silicon nanowire neuron device with no external bias voltage," Scientific reports, vol.12, no.1, pp.3516, 2022. DOI: 10.1038/s41598-022-07374-2
  11. D. Lim and S. Kim, "Polarity control of carrier injection for nanowire feedback field-effect transistors," Nano Research, vol.12, pp.2509-2514, 2019. DOI: 10.1007/s12274-019-2477-6
  12. T. Kim, D. Lim, J. Son, K. Cho, and S. Kim, "Reconfiguration of operation modes in silicon nanowire field-effect transistors by electrostatic virtual doping," Nanotechnology, vol.33, no.41, pp.415203, 2022. DOI: 10.1088/1361-6528/ac7dae
  13. M. Kim, Y. Kim, D. Lim, S. Woo, K. Cho, and S. Kim, "Steep switching characteristics of single-gated feedback field-effect transistors," Nanotechnology, vol.28, no.5, pp.055205, 2016. DOI: 10.1088/1361-6528/28/5/055205
  14. T. Park. et al., "Temperature-Dependent Electrical Characteristics of p-Channel Mode Feedback Field-Effect Transistors," IEEE Access, vol.10, pp.101458-101464, 2022. DOI: 10.1109/ACCESS.2022.3208116
  15. J. Son, K. Cho, and S. Kim, "Electrical Stability of p-Channel Feedback Field-Effect Transistors Under Bias Stresses," IEEE Access, vol.9, pp.119402-119405, 2021. DOI: 10.1109/ACCESS.2021.3108232
  16. C. Peng. et al., "Investigation of negative bias temperature instability effect in partially depleted SOI pMOSFET," IEEE Access, vol.8, pp.99037-99046, 2020. DOI: 10.1109/ACCESS.2020.2997463
  17. S. Navarroet al., "Reliability study of thin-oxide zero-ionization, zero-swing FET 1T-DRAM memory cell," IEEE Electron Device Letters, vol. 40, no.7, pp.1084-1087, 2019. DOI: 10.1109/LED.2019.2915118
  18. A. Ghetti, "Gate oxide reliability: Physical and computational models," in Predictive simulation of semiconductor processing: status and challenges: Springer, 2004, pp.201-258. DOI:10.1007/978-3-662-09432-7_6
  19. L. Tsetseris, R. D. Schrimpf, D. M. Fleetwood, R. L. Pease, and S. T. Pantelides, "Common origin for enhanced low-dose-rate sensitivity and bias temperature instability under negative bias," IEEE transactions on nuclear science, vol.52, no.6, pp.2265-2271, 2005. DOI: 10.1109/TNS.2005.860670
  20. Y. Shin, J. Son, J. Jeon, K. Cho, and S. Kim, "Logic-In-Memory Characteristics of Reconfigurable Feedback Field-Effect Transistors with Double-Gated Structure," Advanced Electronic Materials, pp.2300132, 2023. DOI: 10.1002/aelm.202300132
  21. P. Samanta, H.-S. Huang, S.-Y. Chen, T.-J. Tzeng, and M.-C. Wang, "Interface trap generation and recovery mechanisms during and after positive bias stress in metal-oxide-semiconductor structures," Applied Physics Letters, vol.100, no.20, 2012. DOI: 10.1063/1.4711216
  22. L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, "Hydrogen-related instabilities in MOS devices under bias temperature stress," IEEE Transactions on Device and Materials Reliability, vol.7, no.4, pp.502-508, 2007. DOI: 10.1109/TDMR.2007.910438
  23. S. Rashkeev, D. Fleetwood, R. Schrimpf, and S. Pantelides, "Effects of hydrogen motion on interface trap formation and annealing," IEEE Transactions on Nuclear Science, vol.51, no.6, pp.3158-3165, 2004. DOI: 10.1109/TNS.2004.839202
  24. M. L. Reed and J. D. Plummer, "Chemistry of Si-SiO2 interface trap annealing," Journal of applied physics, vol.63, no.12, pp.5776-5793, 1988. DOI 10.1063/1.340317