DOI QR코드

DOI QR Code

Deep Reinforcement Learning-Based C-V2X Distributed Congestion Control for Real-Time Vehicle Density Response

실시간 차량 밀도에 대응하는 심층강화학습 기반 C-V2X 분산혼잡제어

  • Byeong Cheol Jeon (Dept. of Electronic Engineering, Hanbat National University) ;
  • Woo Yoel Yang (Dept. of Electronic Engineering, Hanbat National University) ;
  • Han-Shin Jo (Dept. of Automotive Engineering, Hanyang University)
  • Received : 2023.11.23
  • Accepted : 2023.12.08
  • Published : 2023.12.31

Abstract

Distributed congestion control (DCC) is a technology that mitigates channel congestion and improves communication performance in high-density vehicular networks. Traditional DCC techniques operate to reduce channel congestion without considering quality of service (QoS) requirements. Such design of DCC algorithms can lead to excessive DCC actions, potentially degrading other aspects of QoS. To address this issue, we propose a deep reinforcement learning-based QoS-adaptive DCC algorithm. The simulation was conducted using a quasi-real environment simulator, generating dynamic vehicular densities for evaluation. The simulation results indicate that our proposed DCC algorithm achieves results closer to the targeted QoS compared to existing DCC algorithms.

분산혼잡제어는 높은 밀도의 차량 네트워크에서 채널 혼잡을 완화하고, 통신 성능을 개선하는 기술이다. 기존 분산혼잡제어 기술은 quality of service(QoS) 요구사항을 고려하지 않은 채 채널 혼잡을 줄이는 방향으로 동작한다. 이러한 분산혼잡제어 알고리즘 설계는 과도한 DCC 동작으로 인하여 다른 QoS를 저하시킬 수 있다. 이와 같은 문제를 해결하기 위해 심층강화학습 기반 QoS 적응형 DCC 알고리즘을 제안한다. 시뮬레이션은 준 실환경 시뮬레이터를 기반으로 동적인 차량 밀도를 생성하여 평가하였으며, 시뮬레이션 결과 기존 DCC 알고리즘 보다 목표 QoS에 더 근접한 결과를 확인하였다.

Keywords

Acknowledgement

This work was supported in part by Institute of Information communications Technology Planning Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-01053)

References

  1. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On- Road Motor Vehicles, Standard SAE J3016, Apr. 2021.
  2. Technical Specification Group Services and System Aspects; Study on enhancement of 3GPP Support for 5G V2X Services, document TR 22.886 V15.3.0, 3GPP Sep. 2018.
  3. Enhancement of 3GPP support for V2X scenarios, document TS 22.186 v15.3.0, 3GPP, Jun. 2018.
  4. J. Choi, H. Jo, C. Mun, and J. Yook, "Deep Reinforcement Learning-Based Distributed Congestion Control in Cellular V2X Networks," IEEE Wireless Commun. Lett., vol.10, no.11, pp.2582-2586, Nov. 2021. DOI: 10.1109/LWC.2021.3108821
  5. M. Roshdi, S. Bhadauria, K. Hassan, and G. Fischer, "Deep reinforcement learning based congestion control for V2X communication," in Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2021, pp. 1-6. DOI: 10.1109/PIMRC50174.2021.9569259
  6. Evolved Universal Terrestrial Radio Access (E-UTRA), document TS 36.213 v 14.8.0, 3GPP, Oct. 2018.
  7. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018.
  8. V. Mnih et al., "Human-level control through deep reinforcement learning" in Nature, vol.518, pp.529-533, 2015. DOI: 10.1038/nature14236
  9. Intelligent Transport Systems (ITS); Congestion Control Mechanisms for the C-V2X PC5 interface; Access layer part, document TS 103 574 V1.1.1, Nov. 2018.
  10. On-Board System Requirements for V2V Safety Communications, Standard SAE J2945/1, Mar. 2016.