DOI QR코드

DOI QR Code

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials

나노물질을 이용한 이온교환막의 성능 향상

  • Moon-Sung Kang (Department of Green Chemical Engineering, Sangmyung University)
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2023.12.09
  • Accepted : 2023.12.17
  • Published : 2023.12.31

Abstract

Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.

이온교환막은 전기막 공정의 성능을 결정하는 핵심 구성 요소이다. 본 총설에서는 다양한 전기막 공정에 적용되는 이온교환막의 성능을 탄소계 및 금속계 나노물질을 이용한 개질을 통해 향상시킨 최신 연구 동향을 살펴보았다. 나노물질들은 다양한 방법을 통해 이온교환막에 도입될 수 있다. 특히 탄소계 나노물질은 화학적 개질을 통해 추가적인 기능기를 도입함으로써 고분자 사슬과의 상호작용을 강화할 수 있다. 이를 통해 이온교환막의 이온전도도를 개선시킬 수 있을 뿐만 아니라 적층 구조를 통한 체거름 현상으로 이온 선택 투과성을 향상시킬 수 있다. 한편, 금속계 나노물질은 적층 구조 혹은 다공성 구조를 갖는 특성을 이용하여 이온교환막 내에서 목적 이온과 배제 이온 간의 수화 반경 차이를 이용한 체거름 특성을 통해 이온 선택 투과성을 향상시킬 수 있다. 또한, 사용한 바인더의 특성에 따라서는 나노물질-바인더 간의 상호작용을 통해 이온전도도도 향상시킬 수 있다. 본 총설로부터 탄소계 및 금속계 나노물질을 이용하여 이온교환막의 특성을 효과적으로 조절할 수 있으며, 따라서 이에 관한 연구가 전기막 공정의 성능을 크게 향상시키기 위해 중요함을 확인할 수 있다.

Keywords

Acknowledgement

본 연구는 2022년도 상명대학교 교내연구과제 지원을 받아 수행되었음(2022-A000-0335).

References

  1. J. Kim, S. Kim, and R. Kwak, "Controlling ion transport with pattern structures on ion exchange membranes in electrodialysis", Desalination, 499, 114801 (2021).
  2. R. A. Tufa, T. Piallat, J. Hnat, E. Fontananova, M. Paidar, D. Chanda, E. Curcio, G. di Profio, and K. Bouzek, "Salinity gradient power reverse electrodialysis: Cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity", Chem. Eng. J., 380, 122461 (2020).
  3. T. Wang, S. J. Moon, D. Hwang, H. Park, J. Lee, S. Kim, Y. M. Lee, and S. Kim, "Selective ion transport for a vanadium redox flow battery (VRFB) in nano-crack regulated proton exchange membranes", J. Membr. Sci., 583, 16 (2019).
  4. H. Adabi, A. Shakouri, N. Ul Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto, and W. E. Mustain, "High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells", Nature Energy, 6, 834 (2021).
  5. B. G. Shah, V. K. Shahi, S. K. Thampy, R. Rangarajan, and P. K. Ghosh, "Comparative studies on performance of interpolymer and heterogeneous ion-exchange membranes for water desalination by electrodialysis", Desalination, 172, 257 (2005).
  6. R. McNair, L. Cseri, G. Szekely, and R. Dryfe, "Asymmetric membrane capacitive deionization using anion-exchange membranes based on quaternized polymer blends", ACS Appl. Polym. Mater., 2, 2946 (2020).
  7. I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, "Selectivity of transport processes in ion-exchange membranes: Relationship with the structure and methods for its improvement", Int. J. Mol. Sci., 21, 5517 (2020).
  8. H. Fan and N. Y. Yip, "Elucidating conductivitypermselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes", J. Membr. Sci., 573, 668 (2019).
  9. T. Luo, S. Abdu, and M. Wessling, "Selectivity of ion exchange membranes: A review", J. Membr. Sci., 555, 429 (2018).
  10. R. Takagi, M. Vaselbehagh, and H. Matsuyama, "Theoretical study of the permselectivity of an anion exchange membrane in electrodialysis", J. Membr. Sci., 470, 486 (2014).
  11. M. N. Z. Abidin, M. M. Nasef, and J. Veerman, "Towards the development of new generation of ion exchange membranes for reverse electrodialysis: A review", Desalination, 537, 115854 (2022).
  12. N. U. Afsar, M. A. Shehzad, M. Irfan, K. Emmanuel, F. Sheng, T. Xu, X. Ren, L. Ge, and T. Xu, "Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis", Desalination, 458, 25 (2019).
  13. L. Dammak, J. Fouilloux, M. Bdiri, C. Larchet, E. Renard, L. Baklouti, V. Sarapulova, A. Kozmai, and N. Pismenskaya, "A review on ion-exchange membrane fouling during the electrodialysis process in the food industry, part 1: Types, effects, characterization methods, fouling mechanisms and interactions", Membranes, 11, 789 (2021).
  14. S. Mehdizadeh, Y. Kakihana, T. Abo, Q. Yuan, and M. Higa, "Power generation performance of a pilot-scale reverse electrodialysis using monovalent selective ion-exchange membranes", Membranes, 11, 27 (2021).
  15. Y. Huang, H. Fan, and N. Y. Yip, "Influence of electrolyte on concentration-induced conductivitypermselectivity tradeoff of ion-exchange membranes", J. Membr. Sci., 668, 121184 (2023).
  16. I. A. Stenina and A. B. Yaroslavtsev, "Ionic mobility in ion-exchange membranes", Membranes, 11, 198 (2021).
  17. P. Zuo, Y. Li, A. Wang, R. Tan, Y. Liu, X. Liang, F. Sheng, G. Tang, L. Ge, and L. Wu, "Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage", Angew. Chem., Int. Ed. Engl., 59, 9564 (2020).
  18. S. Zhai, X. Jia, Z. Lu, Y. Ai, X. Liu, J. Lin, S. He, Q. Wang, and L. Chen, "Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers", J. Membr. Sci., 662, 121003 (2022).
  19. D. J. Kim and S. Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22, 285 (2012).
  20. G. Das, J. Choi, P. K. T. Nguyen, D. Kim, and Y. S. Yoon, "Anion exchange membranes for fuel cell application: a review", Polymers, 14, 1197 (2022).
  21. J. Sheng, A. Mukhopadhyay, W. Wang, and H. Zhu, "Recent advances in the selective membrane for aqueous redox flow batteries", Mater. Today Nano, 7, 100044 (2019).
  22. A. R. Kim, M. Vinothkannan, S. Ramakrishnan, B. Park, M. Han, and D. J. Yoo, "Enhanced electrochemical performance and long-term durability of composite membranes through a binary interface with sulfonated unzipped graphite nanofibers for polymer electrolyte fuel cells operating under low relative humidity", Appl. Surf. Sci., 593, 153407 (2022).
  23. M. Vinothkannan, R. Kannan, A. R. Kim, G. G. Kumar, K. S. Nahm, and D. J. Yoo, "Facile enhancement in proton conductivity of sulfonated poly (ether ether ketone) using functionalized graphene oxide-synthesis, characterization, and application towards proton exchange membrane fuel cells", Colloid Polym. Sci., 294, 1197 (2016).
  24. D. Zhang, S. Xu, R. Wan, Y. Yang, and R. He, "Functionalized graphene oxide cross-linked poly (2, 6-dimethyl-1, 4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity", J. Power Sources, 517, 230720 (2022).
  25. Y. N. Yusoff, K. S. Loh, W. Y. Wong, W. R. W. Daud, and T. K. Lee, "Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane", Int. J. Hydrog. Energy, 45, 27510 (2020).
  26. P. Goel, E. Bhuvanesh, P. Mandal, V. K. Shahi, A. Bandyopadhyay, and S. Chattopadhyay, "Diquaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis", Sep. Purif. Technol., 276, 119361 (2021).
  27. M. Qiu, B. Zhang, H. Wu, L. Cao, X. He, Y. Li, J. Li, M. Xu, and Z. Jiang, "Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes", J. Membr. Sci., 573, 1 (2019).
  28. E. Jashni, S. M. Hosseini, M. Shabanian, and M. Sadrzadeh, "Silane functionalized graphene oxidebound polyelectrolyte layers for producing monovalent cation permselective membranes", Sep. Purif. Technol., 278, 119583 (2021).
  29. G. Shukla and V. K. Shahi, "Amine functionalized graphene oxide containing C16 chain grafted with poly (ether sulfone) by DABCO coupling: Anion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019).
  30. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membr. Sci., 611, 118385 (2020).
  31. L. Gao, K. Chan, C. V. Li, L. Xie, and J. F. Olorunyomi, "Highly selective transport of alkali metal ions by nanochannels of polyelectrolyte threaded MIL-53 metal organic framework", Nano Lett., 19, 4990 (2019).
  32. S. Bisht, S. Balaguru, S. K. Ramachandran, A. Gangasalam, and J. Kweon, "Proton exchange composite membranes comprising SiO2, sulfonated SiO2, and metal-organic frameworks loaded in SPEEK polymer for fuel cell applications", J. Appl. Polym. Sci, 138, 50530 (2021).
  33. B. Han, Z. Sun, H. Jiang, X. Sun, J. Ma, M. He, and W. Zhang, "Thin and defect-free ZIF-8 layer assisted enhancement of the monovalent perm-selectivity for cation exchange membrane", Desalination, 529, 115637 (2022).
  34. L. Huang, L. Ding, and H. Wang, "MXene-based membranes for separation applications", Small Science, 1, 2100013 (2021).
  35. J. Li, X. Li, and B. Van der Bruggen, "An MXene-based membrane for molecular separation", Environ. Sci.: Nano, 7, 1289 (2020).
  36. J. Jang, Y. Kang, K. Kim, S. Kim, M. Son, S. Chee, and I. S. Kim, "Concrete-structured Nafion@ MXene/Cellulose acetate cation exchange membrane for reverse electrodialysis", J. Membr. Sci., 646, 120239 (2022).
  37. Z. Yuan, X. Zhu, M. Li, W. Lu, X. Li, and H. Zhang, "A highly ion-selective zeolite flake layer on porous membranes for flow battery applications", Angew. Chem., 128, 3110 (2016).
  38. Q. Dai, W. Lu, Y. Zhao, H. Zhang, X. Zhu, and X. Li, "Advanced scalable zeolite "ions-sieving" composite membranes with high selectivity", J. Membr. Sci., 595, 117569 (2020).
  39. K. Hooshyari, H. Rezania, V. Vatanpour, P. Salarizadeh, M. B. Askari, H. Beydaghi, and M. Enhessari, "High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells", J. Membr. Sci., 612, 118436 (2020).