DOI QR코드

DOI QR Code

The Carbon Stock Change of Vegetation and Soil in the Forest Due to Forestry Projects

산림 사업에 의한 산림 식생 및 토양 탄소 변화

  • Heon Mo Jeong (Carbon and Climate Change Research Team, National Institute of Ecology) ;
  • Inyoung Jang (Carbon and Climate Change Research Team, National Institute of Ecology) ;
  • Sanghak Han (Carbon and Climate Change Research Team, National Institute of Ecology) ;
  • Soyeon Cho (Carbon and Climate Change Research Team, National Institute of Ecology) ;
  • Chul-Hyun Choi (Carbon and Climate Change Research Team, National Institute of Ecology) ;
  • Yeon Ji Lee (Carbon and Climate Change Research Team, National Institute of Ecology) ;
  • Sung-Ryong Kang (Carbon and Climate Change Research Team, National Institute of Ecology)
  • 정헌모 (국립생태원 기후탄소연구팀) ;
  • 장인영 (국립생태원 기후탄소연구팀) ;
  • 한상학 (국립생태원 기후탄소연구팀) ;
  • 조소연 (국립생태원 기후탄소연구팀) ;
  • 최철현 (국립생태원 기후탄소연구팀) ;
  • 이연지 (국립생태원 기후탄소연구팀) ;
  • 강성룡 (국립생태원 기후탄소연구팀)
  • Received : 2023.10.04
  • Accepted : 2023.12.04
  • Published : 2023.12.31

Abstract

To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.

산림 사업이 산림의 탄소저장량에 미치는 영향을 알아보기 위하여 임상도, 산림사업 정보 및 토양 정보 등을 활용하여 산림 사업 전후의 지상부 및 토양의 탄소저장량을 산정하고 그 변화를 분석하고자 하였다. 먼저 임상도 정보에 기초하여 면적이 넓고 영급이 감소하는 도엽 6곳을 선정하였다. 그리고 임상도와 생장계수, 산정 지역의 토양유기물함량, 토양용적밀도 등 데이터를 수집하여 산림 탄소저장량을 산정하였다. 그 결과 모든 곳에서 산림 탄소저장량은 산림사업 후 약 34.1~70.0%가 감소하였다. 그리고 기존 연구와 비교했을 때 국내 산림 토양은 지상부에 비해 더 적은 탄소를 저장하고 있어 우리나라의 산림 토양은 더 많은 탄소를 저장할 수 있는 잠재성이 큰 것으로 판단되며 탄소저장량 증대를 위한 전략이 필요할 것으로 판단되었다. 산림사업이 없을 때 있을 때보다 탄소저장량은 약 1.5배 많은 것으로 추정되었다. 그리고 본 연구에서 산림사업에 따라 간벌 전 산림 탄소저장량으로 회복되기까지 약 27년이 걸리는 것으로 추정되었다. 산림은 물리적 훼손에 의해 탄소저장량이 감소하면 원래의 탄소저장량으로 회복되기까지 오랜 시간이 걸리므로 특히 자연성이 높은 산림은 최대한 보전하는 계획을 수립하여 산림의 탄소저장 기능을 유지할 수 있도록 하여야 할 것이다.

Keywords

Acknowledgement

본 논문은 국립생태원의 "생태계 유형별 탄소저장량 및 거동 산정 연구(NIE-고유연구-2023-16)"에 의해 지원되었습니다.

References

  1. Chhorn, V., Y. Seo, D. Lee and J. Choi. 2020. The three-year effect of thinning intensity on biomass in Larix kaempferi and Pinus koraiensis plantation. Journal of Forest and Environmental Science 36: 17-24. 
  2. Dung, B.X. and D.T.K. Thahn. 2021. Runoff and soil erosion response to clear cutting period of Acacia plantation in a headwater mountain of Vietnam. Applied Research in Science and Technology 1: 12-25.  https://doi.org/10.33292/areste.v1i1.4
  3. Elliott, K.J., C.F. Miniat, A.S. Medenblik. 2020. The long-term case for partial-cutting over clear-cutting in the southern Appalachians USA. New Forests 51: 273-295.  https://doi.org/10.1007/s11056-019-09731-y
  4. Fahey, T.J., T.G. Siccama, C.T. Driscoll, G.E. Liens, J. Campbell, C.E. Johnson, J.J. Battles, J.D. Aber, J.J. Cole, M.C. Fisk, P.M. Groffman, S.P. Hamburg, R.T. Holmes, P.A. Schwarz and R.D. Yanai. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75: 109-176.  https://doi.org/10.1007/s10533-004-6321-y
  5. Fahey, T.J., P.B. Woodbury, J.J. Battles, C.L. Goodale, S.P. Hamburg, S.V. Ollinger and C.W. Woodall. 2009. Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment 8: 245-252.  https://doi.org/10.1890/080169
  6. Friedlingstein, P.M. O'Sullivan, M.W. Jones, R.M. Andrew, L. Gregor, J. Hauck, C. Le Quere, I.T. Luijkx, A. Olsen, G.P. Peters, W. Peters, J. Pongratz, C. Schwingshackl, S. Sitch, J.G. Canadell, P. Ciais, R.B. Jackson, S.R. Alin, R. Alkama, A. Arneth, V.K. Arora, N.R. Bates, M. Becker, N. Bellouin, H.C. Bittig, L. Bopp, F. Chevallier, L.P. Chini, M. Cronin, W. Evans, S. Falk, R.A. Feely, T. Gasser, M. Gehlen, T. Gkritzalis, L. Gloege, G. Grassi, N. Gruber, Oz. Gurses, I. Harris, M. Hefner, R.A. Houghton, G.C. Hurtt, Y. Iida, T. Ilyina, A.K. Jain, A. Jersild, K. Kadono, E. Kato, D. Kennedy, K.K. Goldewijk, J. Knauer, J.I. Korsbakken, P. Landschutzer, N. Lefevre, K. Lindsay, J. Liu, Z. Liu, G. Marland, N. Mayot, M.J. McGrath, N. Metzl, N.M. Monacci, D.R. Munro, S. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P.I. Palmer, N. Pan, D. Pierrot, K. Pocock, B. Poulter, L. Resplandy, E. Robertson, C. R?denbeck, C. Rodriguez, T.M. Rosan, J. Schwinger, R. S?f?rian, J.D. Shutler, I. Skjelvan, T. Steinhoff, Q. Sun, A.J. Sutton, C. Sweeney, S. Takao, T. Tanhua, P.P. Tans, X. Tian, H. Tian, B. Tilbrook, H. Tsujino, F. Tubiello, G.R. van der Werf, A.P. Walker, R. Wanninkhof, C. Whitehead, A.W. Wranne, R. Wright, W. Yuan, C. Yue, X. Yue, S. Zaehle, J. Zeng, and B. Zheng. 2022. Global carbon budget 2022. Earth System Science Data 14: 4811-4900.  https://doi.org/10.5194/essd-14-4811-2022
  7. Geng, Y., Q. Yue, C. Zhang, X. Zhao and K. von Gadow. 2021. Dynamics and drivers of aboveground biomass accumulation during recovery from selective harvesting in an uneven-aged forest. European Journal of Forest Research 140: 1163-1178.  https://doi.org/10.1007/s10342-021-01394-9
  8. Houghton, R.A. 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences 35: 313-347.  https://doi.org/10.1146/annurev.earth.35.031306.140057
  9. IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. 
  10. IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for national greenhouse gas inventories. Calvo Buendia, E. Tanabe, K. Kranjc, A. Baasansuren, J. Fukuda, M. Ngarize, S. Isako, A. Pyrozhenko, Y. Shermanau, P. and Federici, S. Published: IPCC, Switzerland. 
  11. Jeong, J., C. Kim, K. Goo, C. Lee, H. Won and J. Byun. 2003. Physico-chemical properties of Korean forest soils by parent rocks. Journal of Forest Society 92: 254-262. 
  12. Kerang, L., W. Shaoqiang and CAO Mingkui. 2004. Vegetation and soil carbon storage in China. Science in China series D Earth Sciences 47: 49-57.  https://doi.org/10.1360/02yd0029
  13. Kim, C. 2008. Soil CO2 efflux in clear-cut and uncut red pine (Pinus densiflora S. et Z.) stands in Korea. Forest Ecology and Management 255: 3318-3321.  https://doi.org/10.1016/j.foreco.2008.02.012
  14. Kim, S.W., Y.M. Son, E.S. Kim and H. Park. 2014. Estimation of growing stock and carbon stock based on components of forest type map: The case of Kangwon Province. Journal of Forest Society 103: 446-452.  https://doi.org/10.14578/jkfs.2014.103.3.446
  15. Korea Forest Service. 2022. 2022 Statistical yearbook of forestry. 
  16. Lee, J.S., H. Han, S. Kim, S. Lee, Y.M. Son and Y. Son. 2015. A meta-analysis on the effect of forest thinning on diameter growth and carbon stocks in Korea. Journal of Korean Forest Society 104: 527-535.  https://doi.org/10.14578/jkfs.2015.104.4.527
  17. Mills, M.B., Y. Malhi, R.M. Ewers, L.K. Kho, Y.A. The, S. Both, D.F.R.P. Burslem, N. Majalap, R. Nilus, W.H. Huasco, R. Cruz, M.M. Pillco, E.C. Turner, G. Reynolds and T. Riutta. 2023. Tropical forests post-logging are a persistent net carbon source to the atmosphere. PNAS 120: e2214462120. 
  18. Milne, R. and T.A. Brown. 1995. Carbon in the vegetation and soil of Great Britain. Journal of Environmental Management 49: 413-433.  https://doi.org/10.1006/jema.1995.0118
  19. Ministry of Environment. 2022. 2022 National Greenhouse Gas Inventory Report of Korea. 
  20. Nave, L.E., E.D. Vance, C.W. Swanston and P.S. Curtis. 2010. Harvest impacts on soil carbon storage in temperature forests. Forest Ecology and Management 259: 857-866.  https://doi.org/10.1016/j.foreco.2009.12.009
  21. NPRI(Korea national park research institute). 2022. Natural Resources Survey in Gayasan National Park. 
  22. NPRI(Korea national park research institute). 2022. Natural Resources Survey in Sobaeksan National Park. 
  23. NPRI(Korea national park research institute). 2022. Natural Resources Survey in Chiaksan National Park. 
  24. NPRI(Korea national park research institute). 2021. Natural Resources Survey in Odaesan National Park. 
  25. Ross, A. and V.L. Willson. 2017. Paired t-test, p. 17-19. In: Basic and advanced statistical tests. Rotterdam: Sence Publishers. 
  26. Wang, R.J. and D.Y. Kim. 2022. Early effect of environment-friendly harvesting on the dynamics of organic matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea. Journal of Korean Society of Forestry Science 111: 473-481. 
  27. Yuksek, T. and F. Yuksek. 2009. Effects of clear-cutting alder coppice on surface soil properties and aboveground herbaceous plant biomass. Communications in Soil Science and Plant Analysis 40: 2562-2578.  https://doi.org/10.1080/00103620903113281