DOI QR코드

DOI QR Code

Diversity of Nigrospora (Xylariales, Apiosporaceae) Species Identified in Korean Macroalgae Including Five Unrecorded Species

  • Wonjun Lee (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Dong-Geon Kim (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Rekhani H. Perera (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Ji Seon Kim (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Yoonhee Cho (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Jun Won Lee (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Chang Wan Seo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Young Woon Lim (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2023.07.19
  • Accepted : 2023.11.09
  • Published : 2023.12.31

Abstract

Nigrospora (Xylariales, Apiosporaceae) consists of species of terrestrial plant endophytes and pathogens. Nigrospora has also been reported in marine environments such as mangroves, sea fans, and macroalgae. However, limited research has been conducted on Nigrospora associated with macroalgae. Here, we isolated Nigrospora species from three types of algae (brown, green, and red algae) from Korean islands (Chuja, Jeju, and Ulleung) based on phylogenetic analyses of multigenetic markers: the internal transcribed spacers (ITS), beta-tubulin (BenA), and translation elongation factor 1 (TEF1-α). A total of 17 Nigrospora strains were isolated from macroalgae and identified as nine distinct species. The majority of Nigrospora species (seven) were found on brown algae, followed by red algae (three), and then green algae (two). To our understanding, this study represents the first account of N. cooperae, N. covidalis, N. guilinensis, N. lacticolonia, N. osmanthi, N. pyriformis, and N. rubi occurring in marine environments. Additionally, this study provides the first report of the occurrence of N. cooperae, N. covidalis, N. guilinensis, N. lacticolonia, and N. osmanthi in South Korea. This study will provide valuable insights for future research exploring the functions of fungi in macroalgal communities.

Keywords

Acknowledgement

We thank Editage (www.editage.co.kr) for English language editing.

References

  1. Zimmerman A. Ueber einige an tropischen kulturpflanzen beobachtete pilze III. Zentralblatt fur bakteriologie. Parasitenkunde. 1902;8:216-221.
  2. Fan Y-M, Huang W-M, Li W, et al. Onychomycosis caused by Nigrospora sphaerica in an immunocompetent man. Arch Dermatol. 2009;145(5):611-612. doi: 10.1001/archdermatol.2009.80.
  3. Dutta J, Gupta S, Thakur D, et al. First report of nigrospora leaf blight on tea caused by Nigrospora sphaerica in India. Plant Disease. 2015;99(3):417-417. doi: 10.1094/PDIS-05-14-0545-PDN.
  4. Uzor PF, Ebrahim W, Osadebe PO, et al. Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae-evidence for a metabolic partnership. Fitoterapia. 2015;105:147-150. doi: 10.1016/j.fitote.2015.06.018.
  5. Oh SY, Yang JH, Woo JJ, et al. Diversity and distribution patterns of endolichenic fungi in jeju island, South Korea. Sustainability. 2020;12(9):3769. doi: 10.3390/su12093769.
  6. de Queiroz Brito AC, de Mello JF, de Almeida Souza AE, et al. Richness of Nigrospora spp. (Apiosporaceae) in manihot esculenta in Brazil and the description of three new species. Mycol Progress. 2023;22(6):37. doi: 10.1007/s11557-023-01887-4.
  7. Wang M, Liu F, Crous PW, et al. Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia. 2017;39(1):118-142. doi: 10.3767/persoonia.2017.39.06.
  8. Jothish PS, Nayar TS. Airborne fungal spores in a sawmill environment in Palakkad district, Kerala, India. Aerobiologia. 2004;20(1):75-81. doi: 10.1023/B:AERO.0000022981.70984.b7.
  9. Nayar TS, Jothish PS. An assessment of the air quality in indoor and outdoor air with reference to fungal spores and pollen grains in four working environments in Kerala, India. Aerobiologia. 2013;29(1):131-152. doi: 10.1007/s10453-012-9269-8.
  10. Tripathi M, Joshi Y. Endolichenic fungi: A case study from Uttarakhand. Endolichenic fungi: present and future trends. Singapore: Springer; 2019. pp. 119-145. doi: 10.1007/978-981-13-7268-1_6.
  11. Lee DJ, Lee JS, Lee HB, et al. Four endophytic ascomycetes new to Korea: Cladosporium anthropophilum, C. pseudocladosporioides, Daldinia eschscholtzii, and Nigrospora chinensis. The Korean J Mycol. 2019;47(3):187-197. doi: 10.4489/KJM.20190023.
  12. Sun XP, Xu Y, Cao F, et al. Isoechinulin-type alkaloids from a soft coral-derived fungus Nigrospora oryzae. Chem Nat Compd. 2014;50:1153-1155. doi: 10.1007/s10600-014-1189-0.
  13. Zhang QH, Tian L, Sun ZL, et al. Two new secondary metabolites from the marine-derived fungus Nigrospora sphaerica. J Asian Nat Prod Res. 2015;17(5):497-503. doi: 10.1080/10286020.2015.1009899.
  14. Ukwatta KM, Lawrence JL, Wijayarathna CD. The study of antimicrobial, anti-cancer, anti-inflammatory and a-glucosidase inhibitory activities of nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycology. 2019;10(4):222-228. doi: 10.1080/21501203.2019.1620892.
  15. Ola ARB, Lapailaka T, Wogo HE, et al. Bioactive secondary metabolites from the mangrove endophytic fungi Nigrospora oryzae. Indones J Chem. 2021;21(4):1016-1022. doi: 10.22146/ijc.63129.
  16. de Felicio R, Pav~ao GB, de Oliveira ALL, et al. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Revista Brasileira de Farmacognosia. 2015;25(6):641-650. doi: 10.1016/j.bjp.2015.08.003.
  17. Rajulu MG, Rajamani T, Murali TS, et al. The fungal endobiome of seaweeds of the Andaman islands, India. Curr Sci. 2022;123(12):1508-1514. doi: 10.18520/cs/v123/i12/1508-1514.
  18. Taritla S, Kumari M, Kamat S, et al. Optimization of physicochemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal-derived endophytic fungus Aspergillus sp. Front Pharmacol. 2021;12:542891. doi: 10.3389/fphar.2021.542891.
  19. Xu T, Song Z, Hou Y, et al. Secondary metabolites of the genus Nigrospora from terrestrial and marine habitats: chemical diversity and biological activity. Fitoterapia. 2022;161:105254. doi: 10.1016/j.fitote.2022.105254.
  20. Dong JJ, Bao J, Zhang XY, et al. Alkaloids and citrinins from marine-derived fungus Nigrospora oryzae SCSGAF 0111. Tetrahedron Lett. 2014;55(16):2749-2753. doi: 10.1016/j.tetlet.2014.03.060.
  21. Ding B, Yin Y, Zhang F, et al. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol (NY). 2011;13(4):713-721. doi: 10.1007/s10126-010-9333-8.
  22. Yao J, Shi Y, Liu Y, et al. Highly oxidized ergosterol derivatives from the fungus Nigrospora oryzae. Chem Nat Compd. 2019;55(2):390-392. doi: 10.1007/s10600-019-02700-z.
  23. Huang DY, Nong XH, Zhang YQ, et al. Two new 2, 5-diketopiperazine derivatives from mangrove-derived endophytic fungus Nigrospora camelliae-sinensis S30. Nat Prod Res. 2022;36(14):3651-3656. doi: 10.1080/14786419.2021.1878168.
  24. Said Hassane C, Fouillaud M, Le Goff G, et al. Microorganisms associated with the marine sponge Scopalina hapalia: a reservoir of bioactive molecules to slow down the aging process. Microorganisms. 2020;8(9):1262. doi: 10.3390/microorganisms8091262.
  25. Hay ME. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci. 2009;1(1):193-212. doi: 10.1146/annurev.marine.010908.163708.
  26. Krause-Jensen D, Lavery P, Serrano O, et al. Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biol Lett. 2018;14(6):20180236. doi: 10.1098/rsbl.2018.0236.
  27. Froehlich HE, Afflerbach JC, Frazier M, et al. Blue growth potential to mitigate climate change through seaweed offsetting. Curr Biol. 2019;29(18):3087-3093.e3. doi: 10.1016/j.cub.2019.07.041.
  28. Egan S, Harder T, Burke C, et al. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev. 2013;37(3):462-476. doi: 10.1111/1574-6976.12011.
  29. Ren CG, Liu ZY, Wang XL, et al. The seaweed holobiont: from microecology to biotechnological applications. Microb Biotechnol. 2022;15(3):738-754. doi: 10.1111/1751-7915.14014.
  30. Kim CM, et al. The compilation inventory of national biological resources. National Institute of Biological Resources. 2011 https://www.nibr.go.kr/aiibook/ecatalog5.jsp?Dir=108&catimage=&callmode=admin
  31. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993; 2(2):113-118. doi: 10.1111/j.1365-294X.1993.tb00005.x.
  32. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. pp. 315-322. doi: 10.1016/B978-0-12-372180-8.50042-1.
  33. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330. doi: 10.1128/aem.61.4.1323-1330.1995.
  34. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. doi: 10.1080/00275514.1999.12061051.
  35. O'Donnell K, Kistler HC, Cigelnik E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA. 1998;95(5):2044-2049. doi: 10.1073/pnas.95.5.2044.
  36. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160-1166. doi: 10.1093/bib/bbx108.
  37. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. doi: 10.1093/molbev/msw054.
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313. doi: 10.1093/bioinformatics/btu033.
  39. Kornerup A, Wanscher J. Methuen handbook of colour. London: Eyre Methuen; 1978. ISBN-13:978-0413334008
  40. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. doi: 10.1038/nmeth.2089.
  41. Tan YP, Bishop-Hurley SL, Shivas RG, et al. Fungal planet description sheets: 1436-1477. Persoonia Mol Phylogeny Evol Fungi. 2022;49: 261-350. doi: 10.3767/persoonia.2022.49.08.
  42. Chen Q, Bakhshi M, Balci Y, et al. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol. 2022;101(1):417-564. doi: 10.3114/sim.2022.101.06.
  43. Calado MDL, Silva J, Alves C, et al. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One. 2021;16(5):e0250954. doi: 10.1371/journal.pone.0250954.
  44. Zhang QH, Tian L, Zhou LD, et al. Two new compounds from the marine Nigrospora sphaerica. J Asian Nat Prod Res. 2009;11(11):962-966. doi: 10.1080/10286020903339614.
  45. Passarini MR, Santos C, Lima N, et al. Filamentous fungi from the atlantic marine sponge Dragmacidon reticulatum. Arch Microbiol. 2013;195(2):99-111. doi: 10.1007/s00203-012-0854-6.
  46. Kornsakulkarn J, Choowong W, Rachtawee P, et al. Bioactive hydroanthraquinones from endophytic fungus Nigrospora sp. BCC 47789. Phytochem Lett. 2018;24:46-50. doi: 10.1016/j.phytol.2018.01.015.
  47. Suwannarach N, Kumla J, Nishizaki Y, et al. Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Appl Microbiol Biotechnol. 2019;103(17):6973-6987. doi: 10.1007/s00253-019-09926-5.
  48. Trisuwan K, Rukachaisirikul V, Sukpondma Y, et al. Pyrone derivatives from the marine-derived fungus Nigrospora sp. PSU-F18. Phytochemistry. 2009;70(4):554-557. doi: 10.1016/j.phytochem.2009.01.008.
  49. Shang Z, Li XM, Li CS, et al. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem Biodivers. 2012;9(7):1338-1348. doi: 10.1002/cbdv.201100216.
  50. Ding L, Yuan W, Peng Q, et al. Secondary metabolites isolated from the sponge-associated fungus Nigrospora oryzae. Chem Nat Compd. 2016;52(5):969-970. doi: 10.1007/s10600-016-1837-7.
  51. Heo YM, Oh SY, Kim K, et al. Comparative genomics and transcriptomics depict marine algicolous Arthrinium species as endosymbionts that help regulate oxidative stress in brown algae. Front Mar Sci. 2021;8:753222. doi: 10.3389/fmars.2021.753222.
  52. Vallet M, Strittmatter M, Murua P, et al. Chemically-mediated interactions between macroalgae, their fungal endophytes, and protistan pathogens. Front Microbiol. 2018;9:3161. doi: 10.3389/fmicb.2018.03161.