DOI QR코드

DOI QR Code

Constructing a Knowledge Graph for Improving Quality and Interlinking Basic Information of Cultural and Artistic Institutions

문화예술기관 기본정보의 품질개선과 연계를 위한 지식그래프 구축

  • 선은택 (중앙대학교 일반대학원 문헌정보학과 정보학전공) ;
  • 김학래 (중앙대학교 사회과학대학 문헌정보학과)
  • Received : 2023.11.20
  • Accepted : 2023.12.11
  • Published : 2023.12.30

Abstract

With the rapid development of information and communication technology, the speed of data production has increased rapidly, and this is represented by the concept of big data. Discussions on quality and reliability are also underway for big data whose data scale has rapidly increased in a short period of time. On the other hand, small data is minimal data of excellent quality and means data necessary for a specific problem situation. In the field of culture and arts, data of various types and topics exist, and research using big data technology is being conducted. However, research on whether basic information about culture and arts institutions is accurately provided and utilized is insufficient. The basic information of an institution can be an essential basis used in most big data analysis and becomes a starting point for identifying an institution. This study collected data dealing with the basic information of culture and arts institutions to define common metadata and constructed small data in the form of a knowledge graph linking institutions around common metadata. This can be a way to explore the types and characteristics of culture and arts institutions in an integrated way.

정보통신 기술이 빠르게 발전하면서 데이터의 생산 속도가 급증하였고, 이는 빅데이터라는 개념으로 대표되고 있다. 단시간에 데이터 규모가 급격하게 증가한 빅데이터에 대해 품질과 신뢰성에 대한 논의도 진행되고 있다. 반면 스몰데이터는 품질이 우수한 최소한의 데이터로, 특정 문제 상황에 필요한 데이터를 의미한다. 문화예술 분야는 다양한 유형과 주제의 데이터가 존재하며 빅데이터 기술을 활용한 연구가 진행되고 있다. 하지만 문화예술기관의 기본정보가 정확하게 제공되고 활용되는지를 탐색한 연구는 부족하다. 기관의 기본정보는 대부분의 빅데이터 분석에서 사용하는 필수적인 근거일 수 있고, 기관을 식별하기 위한 출발점이 된다. 본 연구는 문화예술 기관의 기본정보를 다루는 데이터를 수집하여 공통 메타데이터를 정의하고, 공통 메타데이터를 중심으로 기관을 연계하는 지식그래프 형태로 스몰데이터를 구축하였다. 이는 통합적으로 문화예술기관의 유형과 특징을 탐색할 수 있는 방안이 될 수 있다.

Keywords

Acknowledgement

이 논문은 2022년도 중앙대학교 CAU GRS 지원에 의하여 작성되었음.

References

  1. Bok, Kyoung-soo & Yoo, Jae-soo (2017). Big data in the fourth industrial revolution. Journal of the Korean Data And Information Science Sociaty, 35(6), 29-39.
  2. Kim, Hak-lae (2017). Knowledge Graph. Seoul: Communicationbooks.
  3. Lee, Yong-ju (2014). Building and retrieval techniques of linked data. Korea Information Processing Society, 21(2), 1057-1060.
  4. Libraries Act. Act No. 19592.
  5. Museum And Art Gallery Support Act. Act No. 19592.
  6. Yoon, So-Young (2013). A study on national linking system implementation based on linked data for public data. Journal of the Korean Society for Information Management, 30(1), 259-284. https://doi.org/10.3743/KOSIM.2013.30.1.259
  7. Abu-Salih, B. (2021). Domain-specific knowledge graphs: a survey. Journal of Network and Computer Applications, 185, 103076. https://doi.org/10.1016/j.jnca.2021.103076
  8. Berners-Lee, T. (1998). Semantic Web Road Map. https://www.w3.org/DesignIssues/Semantic.html
  9. Bush, V. (1945). As we may think. The Atlantic Monthly, 176(1), 101-108. https://doi.org/10.1145/227181.227186
  10. Chen, X., Jia, S., & Xiang, Y. (2020). A review: knowledge reasoning over knowledge graph. Expert Systems with Applications, 141, 112948. https://doi.org/10.1016/j.eswa.2019.112948
  11. Daruna, A., Das, D., & Chernova, S. (2022). Explainable Knowledge Graph Embedding: Inference Reconciliation for Knowledge Inferences Supporting Robot Actions. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1008-1015). https://doi.org/10.48550/arXiv.2205.01836
  12. Fensel, D., Simsek, U., Angele, K., Huaman, E., Karle, E., Panasiuk, O., Toma, L., Umbrich, J., & Wahler, A. (2020). Introduction: What Is a Knowledge Graph?. Knowledge Graphs. https://doi.org/10.1007/978-3-030-37439-6_1
  13. Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U. (2008). Modular reuse of ontologies: theory and practice. Journal of Artificial Intelligence Research, 31, 273-318. https://doi.org/10.1613/jair.2375
  14. Gutierrez, C. & Sequeda, J. F. (2021). Knowledge graphs. Communications of the Association for Computing Machinery, 64(3), 96-104. https://doi.org/10.1145/3418294
  15. Hogan, A., Blomqvist, E., Cochez, M., d'Amato, C., de Melo, G., Gutierrez, C., Kirrane, S., Labra G., Navigli, R., Neumaier, S., Ngonga A., Polleres, A., Rashid, S., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., & Zimmermann, A. (2021). Knowledge graphs. Association for Computing Machinery Computing Surveys (Csur), 54(4), 1-37. https://doi.org/10.1145/3447772
  16. Iliadis, A., Acker, A., Stevens, W., & Kavakli, S. B. (2022). One Schema to Rule Them All: How Schema.org Models the World of Search. Journal of the Association for Information Science and Technology. https://doi.org/10.1002/asi.24744
  17. Kollar, T., Berry, D., Stuart, L. M., Owczarzak, K., Chung, T., Mathias, L., Kayser, M., Snow, B., & Matsoukas, S. (2018). The alexa meaning representation language. North American Chapter of the Association for Computational Linguistics, 177-184. https://doi.org/10.18653/v1/N18-3022
  18. Latzko-Toth, G., Bonneau, C., & Millette, M. (2017). Small data, thick data: thickening strategies for trace-based social media research. The SAGE Handbook of Social Media Research Methods, 199-214. https://doi.org/10.4135/9781473983847
  19. Mandal, S. (2022). Integration of linked open data authorities with open refine: a methodology for libraries. Library Philosophy & Practice, 1-9.
  20. Miles, A. & Perez-Aguera, J. R. (2007). Skos: simple knowledge organisation for the web. Cataloging & Classification Quarterly, 43(3-4), 69-83. https://doi.org/10.1300/J104v43n03_04
  21. Mongiovi, M., Recupero, D. R., Gangemi, A., Presutti, V., Nuzzolese, A. G., & Consoli, S. (2015). Semantic reconciliation of knowledge extracted from text through a novel machine reader. In Proceedings of the 8th International Conference on Knowledge Capture, 1-4. https://doi.org/10.1145/2815833.2816945
  22. Monnin, P., Raissi, C., Napoli, A., & Coulet, A. (2019). Knowledge Reconciliation with Graph Convolutional Networks: Preliminary Results. In DL4KG2019-Workshop on Deep Learning for Knowledge Graphs.
  23. Sanchez Alonso, S. & Garcia Barriocanal, E. (2006). Making use of upper ontologies to foster interoperability between SKOS concept schemes. Online Information Review, 30(3), 263-277. https://doi.org/10.1108/14684520610675799
  24. Sohmen, L. & Rossenova, L. (2022). Open refine to wikibase: a new data upload pipeline. In Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries, 1-2. https://doi.org/10.1145/3529372.3530919
  25. Strickland, E. (2022). Andrew Ng, AI minimalist: the machine-learning pioneer says small is the new big. g. IEEE Spectrum, 59(4), 22-50. https://doi.org/10.1109/MSPEC.2022.9754503.
  26. Tiwari, S., Al-Aswadi, F. N., & Gaurav, D. (2021). Recent trends in knowledge graphs: theory and practice. Soft Computing, 25, 8337-8355. https://doi.org/10.1007/s00500-021-05756-8
  27. Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: a survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12), 2724-2743. https://doi.org/10.48550/arXiv.2107.07842