DOI QR코드

DOI QR Code

Multi-spectral adaptive vibration suppression of two-path active mounting systems with multi-NLMS algorithms

  • Yang Qiu (School of Mechanical Engineering, Yeungnam University) ;
  • Dongwoo Hong (Daegu Mechatronics & Materials Institute) ;
  • Byeongil Kim (School of Mechanical Engineering, Yeungnam University)
  • Received : 2022.07.17
  • Accepted : 2023.11.23
  • Published : 2023.12.25

Abstract

Recently, hybrid and electric vehicles have been actively developed to replace internal combustion engine (ICE) vehicles. However, their vibrations and noise with complex spectra cause discomfort to drivers. To reduce the vibrations transmitted through primary excitation sources such as powertrains, structural changes have been introduced. However, the interference among different parts is a limitation. Thus, active mounting systems based on smart materials have been actively investigated to overcome these limitations. This study focuses on diminishing the source movement when a structure with two active mounting systems is excited to a single sinusoidal and a multi-frequency signal, which were investigated for source movement reduction. The overall structure was modeled based on the lumped parameter method. Active vibration control was implemented based on the modeled structure, and a multi-normalization least mean square (NLMS) algorithm was used to obtain the control input for the active mounting system. Furthermore, the performance of the NLMS algorithm was compared with that of the quantification method to demonstrate the performance of active vibration control. The results demonstrate that the vibration attenuation performance of the source component was improved.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A03039493 and NRF-2022R1F1A1076089).

References

  1. ALamir, A.E. (2015), "Optimal control and design of composite laminated piezoelectric plates", Smart Struct. Syst., Int. J., 15(5), 1177-1202. https://doi.org/10.12989/sss.2015.15.5.1177
  2. Cao, Y., Zandi, Y., Gholizadeh, M., Fu, L., Du, J., Qian, X., Wang, Z., Roco-Videla, A., Selmi, A. and Issakhov, A. (2021), "Optimization algorithms for composite beam as smart active control of structures using genetic algorithms", Smart Struct. Syst., Int. J., 27(6), 1041-1052. https://doi.org/10.12989/sss.2021.27.6.1041
  3. Chee, C.Y., Tong, L. and Steven, G.P. (1999), "A mixed model for composite beams with piezoelectric actuators and sensors", Smart Mater. Struct., 8(3), 417-432. https://doi.org/10.1088/0964-1726/8/3/313
  4. Choi, S.B. and Hong, S.R. (2007), "Active vibration control of a flexible structure using an inertial type piezoelectric mount", Smart Mater. Struct., 16, 25-35. https://doi.org/10.1088/0964-1726/16/1/003
  5. Choi, S.B., Sohn, J.W., Han, Y.M. and Kim, J.W. (2008), "Dynamic characteristics of three-axis active mount featuring piezoelectric actuators", J. Intell. Mater. Syst. Struct., 19(9), 1053-1066. https://doi.org/10.1177/1045389X07083142
  6. Gao, Z., Huang, J., Miao, Z. and Zhu, X. (2020), "Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors", Smart Struct. Syst.., Int. J., 25(5), 559-567. https://doi.org/10.12989/sss.2020.25.5.559
  7. Garcia-Bonito, J., Brennan, M.J., Elliott, S.J., David, A. and Pinnington, R.J. (1998), "A novel high-displacement piezoelectric actuator for active vibration control", Smart Mater. Struct., 7, 31-42. https://doi.org/10.1088/0964-1726/7/1/005
  8. Han, Y.M. (2020), "Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount", J. Korea Converg. Soc., 11(11), 203-209. https://doi.org/10.15207/JKCS.2020.11.11.203
  9. Hillis, A.J., Harrison, A.J.L. and Stoten, D.P. (2005), "A comparison of two adaptive algorithms for the control of active engine mounts", J. Sound Vib., 286, 37-54. https://doi.org/10.1016/j.jsv.2004.09.023
  10. Hong, D. and Kim, B. (2019a), "Vibration reduction against modulated excitation using multichannel NLMS algorithm for a structure with three active paths between plates", J. Mech. Sci. Technol., 33(10), 4673-4680. https://doi.org/10.1007/s12206-019-0910-0
  11. Hong, D. and Kim, B. (2019b), "Quantification of Active Structural Path for Vibration Reduction Control of Plate Structure under Sinusoidal Excitation", Appl. Sci., 9(4), 711. https://doi.org/10.3390/app9040711
  12. Jang, D.D., Park, J. and Jung, H.J. (2015), "Experimental investigation of an active mass damper system with time delay control algorithm", Smart Struct. Syst., Int. J., 15(3), 863-879. https://doi.org/10.12989/sss.2015.15.3.863
  13. Jiang. J., Gao, W., Wang, L., Teng, Z. and Liu, Y. (2018), "Active vibration control based on modal controller considering structure-actuator interaction", J. Mech. Sci. Technol., 32(8), 3515-3521. https://doi.org/10.1007/s12206-018-0702-y
  14. Kim, B., Washington, G.N. and Singh, R. (2012a), "Control of incommensurate sinusoids using enhanced adaptive filtering algorithm based on sliding mode approach", J. Vib. Control, 19(8), 1265-1280. https://doi.org/10.1177/1077546312444659
  15. Kim, B., Washington, G.N. and Singh, R. (2012b), "Control of modulated vibration using an enhanced adaptive filtering algorithm based on model-based approach", J. Sound Vib., 331(18), 4101-4114. https://doi.org/10.1016/j.jsv.2012.04.007
  16. Kim, B., Washington, G.N. and Yoon, H.S. (2013), "Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control", Smart Struct. Syst., Int. J., 11(6), 623-635. https://doi.org/10.12989/sss.2013.11.6.623
  17. Lee, S.K., Lee, S., Back, J. and Shin, T. (2018), "A new method for active cancellation of engine order noise in a passenger car", Appl. Sci., 8(8), 1394. https://doi.org/10.3390/app8081394
  18. Liette, J., Dreyer, J.T. and Singh, R. (2014), "Interaction between two active structural paths for source mass motion control over mid-frequency range", J. Sound Vib., 333(9), 2369-2385. https://doi.org/10.1016/j.jsv.2013.12.002
  19. Lin, C.Y. and Jheng, H.W. (2017), "Active vibration suppression of a motor-driven piezoelectric smart structure using adaptive fuzzy sliding mode control and repetitive control", Appl. Sci., 7(3), 240. https://doi.org/10.3390/app7030240
  20. Lu, L.Y., Lin, G.L., Chen, Y.S. and Hsiao, K.A. (2020), "Vertical equipment isolation using piezoelectric inertial-type isolation system", Smart Struct. Syst., Int. J., 26(2), 195-211. https://doi.org/10.12989/sss.2020.26.2.195
  21. Malgaca, L. and Karagulle, H. (2009), "Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation", Smart Struct. Syst., Int. J., 5(1), 55-68. https://doi.org/10.12989/sss.2009.5.1.055
  22. Naseri, R., Talebi, H.A., Ohadi, A. and Fakhari, V. (2020), "A robust active control scheme for automotive engine vibration based on disturbance observer", ISA Transactions, 100, 13-27. https://doi.org/10.1016/j.isatra.2019.11.005
  23. Niu, W., Zou, C.Z., Li, B. and Wanga, W. (2019), "Adaptive vibration suppression of time-varying structures with enhanced FxLMS algorithm", Mech. Syst. Signal Process., 118, 93-107. https://doi.org/10.1016/j.ymssp.2018.08.009
  24. Shin, Y.H., Kim, T.Y. and Lee, J.H. (2019), "Development of Hybrid Vibration Isolator by Inertial-Type Actuator and Wire Mesh Mount", IEEE/ASME Transact. Mechatron., 24(3), 1356-1367. https://doi.org/10.1109/TMECH.2019.2906656
  25. Simonovic, A.M., Jovanovic, M.M., Lukic, N.S., Zoric, N.D., Stupar, S.N. and Ilic, S.S. (2016), "Experimental studies on active vibration control of smart plate using a modified PID controller with optimal orientation of piezoelectric actuator", J. Vib. Control, 22(11), 2619-2631. https://doi.org/10.1177/1077546314549037
  26. Sohn, J.W., Paeng, Y.S. and Choi, S.B. (2010), "An active mount using an electromagnetic actuator for vibration control: experimental investigation", J. Mech. Eng. Sci., 224(8), 1617-1625. https://doi.org/10.1243/09544062JMES1902
  27. Song, P. and Zhao, H. (2018), "Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control", Mech. Syst. Signal Process., 107, 93-104. https://doi.org/10.1016/j.ymssp.2018.01.035
  28. Vijayakumar, M.P., Ashwin, U. and Raja, S. (2014), "Active vibration control of engine mount system of transport aircraft using PZT stack actuators", J. Mechatron., 2, 226-231. https://doi.org/10.1166/jom.2014.1057
  29. Vivek, G., Manu, S. and Nagesh, T. (2011), "Mathematical modeling of actively controlled piezo smart structures: a review", Smart Struct. Syst., Int. J., 8(3), 275-302. https://doi.org/10.12989/sss.2011.8.3.275
  30. Xiong, S.L. and Shi, G. (2012), "Piezoelectric actuator design and application on active vibration control", Proceedings of 2012 International Conference on Solid State Devices and Materials Science, Macao, April.
  31. Zhao, Y. and Wang, X. (2019), "A review of low-frequency active vibration control of seat suspension systems", Appl. Sci., 9(16), 3326. https://doi.org/10.3390/app9163326