DOI QR코드

DOI QR Code

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers

동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자

  • Ok Yeon Hong (R&D Team, RN2 Technologies) ;
  • Seok-Hong Min (Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University)
  • 홍옥연 ((주)알엔투테크놀로지 개발팀) ;
  • 민석홍 (강릉원주대학교 신소재금속공학과)
  • Received : 2023.10.09
  • Accepted : 2023.12.04
  • Published : 2023.12.27

Abstract

The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

Keywords

Acknowledgement

This study has been worked with the support of a research grant of Gangneung-Wonju National University in 2022. This study was also supported by RN2 technologies Co.

References

  1. H. Birol, T. Maeder, C. Jacq and P. Ryser, J. Eur. Ceram. Soc., 25, 2065 (2005).
  2. G. Q. Lu, R. C. Sutterlin and T. K. Gupta, J. Am. Ceram. Soc., 76, 1907 (1993).
  3. J. H. Jean and C. R. Chang, J. Am. Ceram. Soc., 80, 3084 (1997).
  4. C. R. Chang and J. H. Jean, J. Am. Ceram. Soc., 81, 2805 (1998).
  5. C. J. Ting, C. S. Hsi and H. Y. Lu, J. Am. Ceram. Soc., 83, 2945 (2000).
  6. C. S. Hsi and M. W. Lee, Jpn. J. Appl. Phys., 41, 5323 (2002).
  7. J. H. Jean and C. R. Chang, J. Am. Ceram. Soc., 87, 1287 (2004).
  8. H. Birol, T. Maeder and P. Ryser, 1st International Conference on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT) (Baltimore, MD, April 2005), p.300.
  9. R. C. Sutterlin, G. O. Dayton and J. V. Biggers, IEEE Trans. Compon., Packag., Manuf. Technol., Part B, 18, 346 (1995).
  10. P. Z. Cai, G. L. Messing and D. L. Green, J. Am. Ceram. Soc., 80, 1929 (1997).
  11. P. Z. Cai, G. L. Messing and D. L. Green, J. Am. Ceram. Soc., 80, 1940 (1997).
  12. J. Kanters, U. Eisele and J. Rodel, J. Am. Ceram. Soc., 84, 2757 (2001).
  13. M. J. Chiang, J. H. Jean and S. C. Lin, Mater. Chem. Phys., 28, 413 (2011).
  14. D. W. Ni, V. Esposito, C. G. Schmidt, T. T. Molla, K. B. Andersen, A. Kaiser, S. Ramousse and N. Pryds, J. Am. Ceram. Soc., 96, 972 (2013).
  15. Z. Ma, S. Qi and R. Zuo, Ceram. Int., 42, 7164 (2016).
  16. R, Huang and J. Pan, J. Eur. Ceram. Soc., 28, 1931 (2008).
  17. L. Chretien, A. Heux, G. Antou, N. Pradeilles, N. Delhote and A. Maitre, Materials, 15, 6405 (2022).
  18. J. S. Sung, K. D. Koo, C. K. Yoon, S. J. Lee and J. H. Park, J. Korean Ceram. Soc., 34, 601 (1997).
  19. G. Feng, Y. Zupei, H. Yudong, T. Changsheng and Q. Shaobo, J. Mater. Sci., 38, 1523 (2003).
  20. X. Liu, Bull. Mater. Sci., 37, 117 (2014).
  21. S. Vasudevan and A. Shaikh, Proceedings of 44th Electronic Components and Technology Conference (Washington, DC, May 1994) p.612.
  22. H. Birol, T. Maeder and P. Ryser, J. Eur. Ceram. Soc., 26, 1937 (2006).
  23. S. M. Chitale and R. W. Vest, IEEE Trans. Compon., Hybrids, Manuf. Technol., 11, 604 (1988).
  24. Y. M. Chiang, L. A. Silverman, R. H. French and R. M. Cannon, J. Am. Ceram. Soc., 77, 1143 (1994).
  25. T. Ogihara and T. Kodera, Mater. Trans., 61, 1409 (2020).
  26. Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, p.87, Springer, New York, NY (2005).
  27. S. Inaba and S. Fujino, J. Am. Ceram. Soc., 93, 217 (2010).
  28. J. W. Oh, S. K. Ryu, W. S. Lee and S. J. Park, Powder Technol., 322, 1 (2017).
  29. N. Rodkevich E. Glazkova, A. Pervikov, Marat Lerner and S. Kazantsev, AIP Conf. Proc., 2051, 020252 (2018).
  30. O. R. K. Montedo, F. J. Floriano, J. O. Filho, E. Angoletto and A. M. Bernardin, Mater. Res., 12, 197 (2009).
  31. L. Lefebvre, L. Gremillard, J. Chevalier, R. Zenati and D. Bernache-Assolant, Acta Biomater., 4, 1894 (2008).
  32. J. Marchi, J. C. Bressiani and A. H. A. Bressiani, Mater. Res., 4, 231 (2001).
  33. A. Karamanov and M Pelino, J. Eur. Ceram. Soc., 26, 2519 (2006).
  34. O. R. K. Montedo, F. J. Floriano, J. O. Filho, E. Angoletto and A. M. Bernardin, Mater. Res., 12, 197 (2009).
  35. F. Andreola, L. Barbieri, I. Lancellotti, M. I. Martin, J. Ma. Rincon and M. Romero, J. Therm. Anal. Calorim., 123, 241 (2016).
  36. A. N. Prabhu and R. W. Vest, Sintering and Catalysis, Materials Science Research, vol 10, p.399, ed. G. C. Kuczynski, Springer, Boston, MA (1975).
  37. B. S. Chiou and J. Y. Sheu, J. Electron. Mater., 21, 575 (1992).
  38. R. W. Vest, IEEE Trans. Compon., Hybrids, Manuf. Technol., 14, 396 (1991). https://doi.org/10.1109/33.87321
  39. H. M. Cho, H. J. Kim, C. S. Lee, K. S. Bang and N. K. Kang, J. Microelectron. Packag. Soc., 11, 77 (2004).
  40. R. K. Bordia and G. W. Scherer, Acta Metall., 36, 2399 (1988).
  41. J. Ollagnier, O. Guillon and J. Rodel, J. Am. Ceram. Soc., 93, 74 (2010).
  42. H. L. Frandsen, E. Olevsky, T. T. Molla, V. Esposito, R. Bjork and N. Pryds, J. Am. Ceram. Soc., 96, 80 (2013).
  43. P. Jaccard, New Phytol., 11, 37 (1912).