DOI QR코드

DOI QR Code

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology

구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술

  • Ju-Chan Kwon (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Bok-Hyun Oh (Company Affiliated Research Institute, Kairos Corp.) ;
  • Sang-Jin Lee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 권주찬 (목포대학교 첨단재료공학과) ;
  • 오복현 ((주)카이로스 기업부설연구소) ;
  • 이상진 (목포대학교 첨단재료공학과)
  • Received : 2023.11.03
  • Accepted : 2023.12.02
  • Published : 2023.12.27

Abstract

The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.

Keywords

Acknowledgement

This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (NRF 2021RIS-002).

References

  1. A. F. Gonzalez, N. H. Yang and R. S. Liu, J. Phys. Chem. C, 121, 27775 (2017).
  2. H. Zhang, Y. Yang, D. Ren, L. Wang and X. He, Energy Storage Mater., 36, 147 (2021).
  3. H. F. Andersen, C. E. L. Foss, J. Voje, R. Tronstad, T. Mokkelbost, P. E. Vullum, A. Ulvestad, M. Kirkengen and J. P. Maehlen, Sci. Rep., 9, 14814 (2019).
  4. F. Dou, L. Shi, G. Chen and D. Zhang, Electrochem. Energy Rev., 2, 149 (2019).
  5. Z. Yu, L. Cui, B. Zhong and G. Qu, Coatings, 13, 1502 (2023). https://doi.org/10.3390/coatings13091502
  6. W. J. Legerstee, T. Noort, T. K. van Vliet, H. Schut and E. M. Kelder, Appl. Nanosci., 12, 3399 (2022).
  7. L. Qian, J. L. Lan, M. Xue, Y. Yu and X. Yanga, RSC Adv., 12, 9238 (2022).
  8. L. Cao, J. Huang, Z. Lin, X. Yu, X. Wu, B. Zhang, Y. Zhan, F. Xie, W. Zhang, J. Chen and H. Meng, J. Mater. Res., 33, 1219 (2018).
  9. J. A. Yang, T. Mori and M. Kuwabara, ISIJ Int., 47, 1394 (2007).
  10. Y. Han, Z. Lu, Z. Teng, J. Liang, Z. Guo, D. Wang, M. Han and W. Yang, Langmuir, 33, 5879 (2017).
  11. A. S. Silva and J. H. Z. Santos, Adv. Colloid Interface Sci., 314, 102888 (2023).
  12. G. Ren, H. Su and S. Wang, J. Sol-Gel Sci. Technol., 96, 108 (2020).
  13. Y. H. Lim, D. K. Kim and Y. K. Jeong, J. Korean Powder Metall. Inst., 23, 442 (2016).
  14. P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, Electrochim. Acta, 152, 345 (2015).
  15. R. E. Gibbs, Proc. R. Soc. London, Ser. A, 113, 351 (1926).
  16. T. M. Hafshejani, A. Mahmood, J. Wohlgemuth, M. Koenig, R. C. Longo and P. Thissen, ACS Omega, 8, 7555 (2023).
  17. R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi and S. Santucci, Appl. Surf. Sci., 70-71, 222 (1993).