DOI QR코드

DOI QR Code

Growth of Si-Doped β-Ga2O3 Epi-Layer by Metal Organic Chemical Vapor Deposition U sing Diluted SiH4

유기 금속 화학 증착법(MOCVD)의 희석된 SiH4을 활용한 Si-Doped β-Ga2O3 에피 성장

  • Hyeong-Yun Kim (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Sunjae Kim (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hyeon-U Cheon (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jae-Hyeong Lee (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Dae-Woo Jeon (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ji-Hyeon Park (Display Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 김형윤 (한국세라믹기술원 디스플레이소재센터) ;
  • 김선재 (한국세라믹기술원 디스플레이소재센터) ;
  • 천현우 (한국세라믹기술원 디스플레이소재센터) ;
  • 이재형 (한국세라믹기술원 디스플레이소재센터) ;
  • 전대우 (한국세라믹기술원 디스플레이소재센터) ;
  • 박지현 (한국세라믹기술원 디스플레이소재센터)
  • Received : 2023.10.09
  • Accepted : 2023.11.22
  • Published : 2023.12.27

Abstract

β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.

Keywords

Acknowledgement

This work was supported by Korea Research Institute for defense Technology planning and advancement (KRIT) grant funded by the Korea government (Defense Acquisition Program Administration, DAPA) (KRIT-CT-22-046, Oxide semiconductor based High current Thyristor Research Laboratory, 2023). The samples were analyzed by X-ray diffraction (EMPY REAN/Malvern Panalytical) at the Core Research Center for Energy Convergence at Chonnam National University.

References

  1. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas and J. Rebollo, IEEE Trans. Power Electron., 29, 2155 (2013).
  2. M. bosi, P. Mazzolini, L. Seravalli and R. Fornari, J. Mater. Chem. C, 8, 10975 (2020).
  3. S. Geller, J. Chem. Phys., 33, 676 (1960).
  4. S. Nakagomi and Y. Kokubun, J. Cryst. Growth, 349, 12 (2012).
  5. Z. Feng, Y. Cai, G. Yan, Z. Hu, K. Dang, Y. Zhang, Z. Lu, H. Cheng, X. Lian, Y. Xu, C. Zhang, Q. Feng, H. Zhou, J. Zhang and Y. Hao, Phys. Status Solidi A, 216, 1900421 (2019).
  6. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui and S. Yamakoshi, Semi-cond. Sci. Technol., 31, 034001 (2016).
  7. M. Higashiwaki, K. Sasaki, H. Murakami and Y. Kumagai, J. Phys. D, 50, 333002 (2017).
  8. Z. Galazka, S. Ganschow, P. Seyidov, K. Irmscher, M. Pietsch, T. S. Chou, S. B. Anooz, R. Grueneberg, A. Popp, A. Dittmar, A. Kwasniewski, M. Suendermann, D. Klimm, T. Straubinger, T. Schroeder and M. Bick-ermann, Appl. Phys. Lett., 120, 152101 (2022).
  9. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui and S. Yamakoshi. Jpn. J. Appl. Phys., 55, 1202A2 (2016).
  10. P. Vogt and O. Bierwagen, Appl. Phys. Lett., 108, 072101 (2016).
  11. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar and A. Koukitu, Appl. Phys. Express, 8, 015503 (2014).
  12. G. Wagner, M. Baldini, D. Gogova, M. Schmidbauer, R. Schewski, M. Albrecht, Z. Galazka, D. Klimm and R. Fornari, Phys. Status Solidi A, 211, 27 (2014).
  13. K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless and G. H. Jessen, Appl. Phys. Lett., 111, 012103 (2017).
  14. S. Rafique, L. Han, A. T. Neal, S. Mou, J. Boeckl and H. Zhao, Phys. Status Solidi A, 215, 1700467 (2018).
  15. W. Xu, J. Shi, Y. Li, X. Xiu, S. Ding, Z. Xie, T. Tao, P. Chen, B. Liu, R. Zhang and Y. Zheng, Mater. Lett., 289, 129411 (2021).
  16. D. Seo, S. Kim, H. Kim, D. Jeon, J. Park and W. Hwang, Cryst. Growth Des., 23, 7090 (2023).
  17. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He and B. H. Zhao, J. Appl. Phys., 101, 083705 (2007).
  18. S. Arab, M. Yao, C. Zhou, P. D. Dapkus and S. B. Cronin, Appl. Phys. Lett., 108, 182106 (2016).