DOI QR코드

DOI QR Code

Effects of Mixing Ratio and Poling on Output Characteristics of BaTiO3-Poly Vinylidene Fluoride Composite Piezoelectric Generators

BaTiO3-Poly Vinylidene Fluoride 복합 압전발전기의 출력특성에 미치는 배합비와 분극의 효과

  • Hee-Tae Kim (Department of Energy Materials & Chemical Engineering, Kyungpook National University) ;
  • Sang-Shik Park (Department of Energy Materials & Chemical Engineering, Kyungpook National University)
  • 김희태 (경북대학교 에너지신소재화학공학과) ;
  • 박상식 (경북대학교 에너지신소재화학공학과)
  • Received : 2023.10.09
  • Accepted : 2023.11.18
  • Published : 2023.12.27

Abstract

BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 ㎂ at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 ℃ for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 ㎂ when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 ㎌ capacitor up to 1.11 V and turn on 10 red LEDs.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2021R1A5A8033165).

References

  1. Y. Zhang, C. K. Jeong, T. Yang, H. Sun, L. Q. Chen, S. Zhang, W. Chen and Q. Wang, J. Mater. Chem. A, 6, 14546 (2018).
  2. P. Hu, L. Yan, C. Zhao, Y. Zhang and J. Niu, Compos. Sci. Technol., 168, 327 (2018).
  3. C. Sohn, H. Kim, J. Han, K. T. Lee, A. Sutka and C. K. Jeong, Nano Energy, 103, 107844 (2022).
  4. J. Gao, D. Xue, W. Liu, C. Zhou and X. Ren, Actuators, 6, 6030024 (2017).
  5. K. Batra, N. Sinha and B. Kumar, Ceram. Int., 46, 24120 (2020).
  6. G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li and X. Wang, ACS Appl. Mater. Interfaces, 8, 34335 (2016).
  7. J. Yan and Y. G. Jeong, Compos. Sci. Technol., 144, 1 (2017).
  8. C. Jin, N. Hao, Z. Xu, I. Trase, Y. Nie, L. Dong, A. Closson, Z. Chen and J. X. J. Zhang, Sens. Actuators, A, 305, 111912 (2020).
  9. X. Chen, X. Han and Q.-D. Shen, Adv. Electron. Mater., 3, 1600460 (2017).
  10. X. Tian, Y. Liu, J. Deng, L. Wang and W. Chen, Sens. Actuators, A, 306, 111971 (2020).
  11. Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao and Y. Zhang, Nano Energy, 11, 719 (2015).
  12. D. Y. Hyeon and K.-I. Park, J. Korean Powder Metall. Inst., 26, 119 (2019).
  13. X. Zhang, M. Q. Le, O. Zahhaf, J. F. Capsal, P. J. Cottinet and L. Petit, Mater. Des., 192, 108783 (2020).
  14. K. Xie, Q. Peng, Y. Li and C. Tan, Ceram. Int., 49, 13339 (2023).
  15. S. K. Sharma, A. K. Sivarathri and V. S. Chauhan, J. Mater. Sci.: Mater. Electron., 31, 20168 (2020).
  16. H. Qian, G. Zhu, H. Xu, X. Zhang, Y. Zhao, D. Yan, X. Hong, Y. Han, Z. Fu, S. Ta and A. Yu, App. Phys. A, 126, 294 (2020).
  17. X. Tao, H. Jin, M. Ma, L. Quan, J. Chen, S. Dong, H. Zhang, C. Lv, Y. Fu and J. Luo, Phys. Status Solidi A, 216, 1900068 (2019).
  18. Y. Niu, K. Yu, Y. Bai and H. Wang, IEEE Trans. Ultrason. Ferroelectr., Freq. Control, 62, 108 (2015).
  19. J. X. Chen, J. W. Li, C. C. Cheng and C. W. Chiu, ACS Omega, 7, 793 (2022).
  20. F. Wang, H. Sun, H. Guo, H. Sui, Q. Wu, X. Liu and D. Huang, Ceram. Int., 47, 35096 (2021).
  21. H. Guo, Q. Wu, H. Sun, X. Liu and H. Sui, Mater. Today Energy, 17, 100489 (2020).
  22. Prateek, V. K. Thakur and R. K. Gupta, Chem. Rev., 116, 4260 (2016).
  23. M. Sahu, S. Hajra, K. Lee, P. Deepti, K. Mistewicz and H. J. Kim, Crystals, 11, 85 (2021).
  24. X. Chen, X. Li, J. Shao, N. An, H. Tian, C. Wang, T. Han, L. Wang and B. Lu, Small, 13, 1604245 (2017).
  25. H. S. Kim, D. W. Lee, D. H. Kim, D. S. Kong, J. Choi, M. Lee, G. Murillo and J. H. Jung, Nanomaterials, 8, 777 (2018).
  26. H. Kong, Y. Jin, G. Li, M. Zhang and J. Du, Adv. Eng. Mater., 25, 2201660 (2023).
  27. B. Dudem, D. H. Kim, L. K. Bharat and J. S. Yu, Appl. Energy, 230, 865 (2018).
  28. J. Yan and Y. G. Jeong, ACS Appl. Mater. Interfaces, 8, 15700 (2016).