Acknowledgement
This work is supported by National Research Foundation of Korea under the grant number 2021R1A2C3009648 and POSTECH Basic Science Research Institute under the NRF grant number NRF2021R1A6A1A1004294412.
References
- G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46:255-308, 2009. https://doi.org/10.1090/S0273-0979-09-01249-X
- F. Hensel, M. Moor, and B. Rieck. A survey of topological machine learning methods. Frontiers Artificial Intelligence, 4, 681108, 2021.
- D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete Computational Geometry, 37:103-120, 2007. https://doi.org/10.1007/s00454-006-1276-5
- A. Zomorodian and G. Carlsson. Computing persistent homology. In: SCG '04 Proceedings of the Twentieth Annual Symposium on Computational Geometry, page 347-356, 2004.
- C. Leesten and J.-H. Jung. Detection of gravitational waves using topological data analysis and convolutional neural network: An improved approach. arXiv:1910.08245, 2019.
- Jose A. Perea and John Harer. Sliding windows and persistence: An application of topological methods to signal analysis. Foundations of Computational Mathematics, 15(3):799-838, Jun 2015. https://doi.org/10.1007/s10208-014-9206-z
- Keunsu Kim and Jae-Hun Jung. Exact multi-parameter persistent homology of time-series data: Fast and variable one-dimensional reduction of multi-parameter persistence theory, 2023.
- John Nicponski and Jae-Hun Jung. Topological data analysis of vascular disease: A theoretical framework. Frontiers in Applied Mathematics and Statistics, 6, 2020.
- Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In M. Botsch, R. Pajarola, B. Chen, and M. Zwicker, editors, Eurographics Symposium on Point-Based Graphics. The Eurographics Association, 2007.
- Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Perez, Matteo Caorsi, Anibal M. Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis toolkit for machine learning and data exploration. Journal of Machine Learning Research, 22(39):1-6, 2021.
- Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 1, 2:559-572, 1901. https://doi.org/10.1080/14786440109462720
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579-2605,
- Enrique Alvarado, Robin Belton, Emily Fischer, Kang-Ju Lee, Sourabh Palande, Sarah Percival, and Emilie Purvine. g-mapper: Learning a cover in the mapper construction, arXiv:2309.06634, 2023.
- Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for discover-ing clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, page 226-231. AAAI Press, 1996.
- Clement Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Simplicial complexes and persistent homology. In Hoon Hong and Chee Yap, editors, Mathematical Software - ICMS 2014, pages 167-174, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
- Hendrik Jacob van Veen, Nathaniel Saul, David Eargle, and Sam W. Mangham. Kepler mapper: A flexible python implementation of the mapper algorithm. Journal of Open Source Software, 4(42):1315, 2019.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.
- Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pages 413-422, 2008.