DOI QR코드

DOI QR Code

AN IMPROVED ALTERNATIVE WENO SCHEMES WITH PERTURBATIONAL TERMS FOR THE HYPERBOLIC CONSERVATION LAWS

  • KUNMIN SUNG (DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY) ;
  • YOUNGSOO HA (DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY) ;
  • MYUNGJOO KANG (DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY)
  • Received : 2023.10.11
  • Accepted : 2023.11.17
  • Published : 2023.12.25

Abstract

This paper aims to improve the alternative formulation of the fifth- and sixth-order accurate weighted essentially non-oscillatory (AWENO) finite difference schemes. The first is to derive the AWENO scheme with sixth-order accuracy in the smooth region of the solution. Second, a new weighted polynomial functions combining the perturbed forms with conserved variable to the AWENO is constructed; the new form of tunable functions are invented to maintain non-oscillatory property. Detailed numerical experiments are presented to illustrate the behavior of the new perturbational AWENO schemes. The performance of the present scheme is evaluated in terms of accuracy and resolution of discontinuities using a variety of one and two-dimensional test cases. We show that the resulted perturbational AWENO schemes can achieve fifth- and sixth-order accuracy in smooth regions while reducing numerical dissipation significantly near singularities.

Keywords

Acknowledgement

This work was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency for Defense Development(ADD) funded by the Defense Acquisition Program Administration in 2021(No. 915020201). Also, this work was supported by the grant of NRF-2021R1A2C1095443 and ICT R&D program of MOTIE (P0014715).

References

  1. A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 49 (1983), 357-393.  https://doi.org/10.1016/0021-9991(83)90136-5
  2. A. Harten, On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes, SIAM Journal on Numerical Analysis, 21 (1984), 1-23.  https://doi.org/10.1137/0721001
  3. A. Harten, S. Osher, Uniformly High-order Accurate Non-oscillatory Schemes, IMRC Technical Summary Rept. 2823, University of Wisconsin, Madison, WI, 1985. 
  4. A. Harten and S. Osher, Uniformly High-Order accurate Non-Oscillatory schemes. I, SIAM Journal on Numerical Analysis, 24 (1987), 279-309.  https://doi.org/10.1137/0724022
  5. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly High-Order accurate Non-Oscillatory schemes, III, Journal of Computational Physics, 71 (1987), 231-303.  https://doi.org/10.1016/0021-9991(87)90031-3
  6. C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, 77 (1988), 439-471.  https://doi.org/10.1016/0021-9991(88)90177-5
  7. C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, II, Journal of Computational Physics, 83 (1989), 32-78.  https://doi.org/10.1016/0021-9991(89)90222-2
  8. X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.  https://doi.org/10.1006/jcph.1994.1187
  9. G. Jiang and C.W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202-228.  https://doi.org/10.1006/jcph.1996.0130
  10. A.K. Henrick, T.D. Aslam, and J.M. Powers, Mapped weighted-essentially-non-oscillatory schemes : achieving optimal order near critical points, Journal of Computational Physics, 207 (2005), 542-567.  https://doi.org/10.1016/j.jcp.2005.01.023
  11. R. Borges, M. Carmona, B. Costa, and W.S. Don, An improved WENO scheme for hyperbolic conservation laws, Journal of Computational Physics, 227 (2008), 3191-3211.  https://doi.org/10.1016/j.jcp.2007.11.038
  12. F. Acker, R. B. de R. Borges and B. Costa, An improved WENO-Z scheme, Journal of Computational Physics, 313 (2016), 726-753.  https://doi.org/10.1016/j.jcp.2016.01.038
  13. S. Gottlieb, J. S. Mullen, and S.J. Ruuth, A Fifth Order Flux Implicit WENO Method, Journal of Scientific Computing, 27 (2006), 271-287.  https://doi.org/10.1007/s10915-005-9034-z
  14. Y. Ha, C. H. Kim, Y. J. Lee, and J. Yoon, An improved weighted essentially non-oscillatory scheme with a new smoothness indicator, Journal of Computational Physics, 232 (2013), 68-86.  https://doi.org/10.1016/j.jcp.2012.06.016
  15. C. H. Kim, Y. Ha, and J. Yoon, Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes, Journal of Scientific Computing, 67 (2016), 299-323.  https://doi.org/10.1007/s10915-015-0079-3
  16. J. Zhu, J.X. Qiu, A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws, Journal of Computational Physics, 318 (2016), 110-121.  https://doi.org/10.1016/j.jcp.2016.05.010
  17. X. Y. Hu Q. Wang, and N. A. Adams, An adapive central-upwind weighted essentially non-oscillatory scheme, Journal of Computational Physics, 229 (2010), 8952-8965.  https://doi.org/10.1016/j.jcp.2010.08.019
  18. X. Y. Hu, and N. A. Adams, Scale separation for implicit large eddy simulation, Journal of Computational Physics, 230 (2011), 7240-7249.  https://doi.org/10.1016/j.jcp.2011.05.023
  19. D.S. Balsara and C.W. Shu, Monotonicity preserving WENO schemes with increasingly high-order of accuracy, Journal of Computational Physics, 160 (2000), 405-452.  https://doi.org/10.1006/jcph.2000.6443
  20. G.A. Gerolymos, D.S'en'echal, and I. Vallet, Very-high-order WENO schemes, Journal of Computational Physics, 228 (2009), 8481-8524.  https://doi.org/10.1016/j.jcp.2009.07.039
  21. Y. Ha, C. H. Kim, Y. H. Yang, and J. Yoon, Sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials, SIAM Journal on Scientific Computing, 38 (2016), A1987-A2017.  https://doi.org/10.1137/15M1042814
  22. I. Cravero, M. Semplice, On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes, Journal of Scientific Computing, 67 (2016), 1219-1246.  https://doi.org/10.1007/s10915-015-0123-3
  23. M. Kaser, A. Iske, ADER schemes on adaptive triangular meshes for scalar conservation laws, Journal of Computational Physics, 205 (2005), 486-508.  https://doi.org/10.1016/j.jcp.2004.11.015
  24. D. Levy, G. Puppo, G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, Mathematical Modelling and Numerical Analysis, 33 (1999), 547-571.  https://doi.org/10.1051/m2an:1999152
  25. S. Pirozzoli, Conservative hybrid compact-WENO schemes for shock-turbulence interaction, Journal of Computational Physics, 178 (2002), 81-117.  https://doi.org/10.1006/jcph.2002.7021
  26. Y. Q. Shen, G.W. Yang, Hybrid finite compact-WENO schemes for shock calculation, International Journal for Numerical Methods in Fluids, 53 (2007), 531-560.  https://doi.org/10.1002/fld.1286
  27. D.S. Balsara, S. Garain, C.-W. Shu, An efficient class of WENO schemes with adaptive order, Journal of Computational Physics, 326 (2016), 780-804.  https://doi.org/10.1016/j.jcp.2016.09.009
  28. L. L. Chen, C. Huang, An improved WLS-WENO method for solving hyperbolic conservation laws, Journal of Computational Physics, 392 (2019), 96-114.  https://doi.org/10.1016/j.jcp.2019.04.059
  29. D. Levy, G. Puppo, G. Russo, Compact central WENO schemes for multidimensional conservation laws, SIAM Journal on Scientific Computing, 22 (2000), 656-672.  https://doi.org/10.1137/S1064827599359461
  30. H.X. Liu, X.M. Jiao, WLS-ENO: weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes, Journal of Computational Physics, 314 (2016), 749-773.  https://doi.org/10.1016/j.jcp.2016.03.039
  31. R. Zhang, M. Zhang, C.-W. Shu, On the order of accuracy and numerical performance of two classes of finite volume WENO schemes, Communications in Computational Physics, 5 (2009), 836-848. 
  32. J. Zhu, J.X. Qiu, A new type of finite volume WENO schemes for hyperbolic conservation laws, Journal of Scientific Computing, 73 (2017), 1338-1359.  https://doi.org/10.1007/s10915-017-0486-8
  33. F. Zeng, Y. Shen, S. Liu, A perturbational weighted essentially non-oscillatory scheme. Computer and Fluids, 172 (2018), 196-208. 
  34. Yahui Wang, Yulong Du, Kunlei Zhao and Li Yuan, Modified Stencil Approximations for Fifth-Order Weighted Essentially Non-oscillatory Schemes, Journal of Scientific Computing, 81 (2019), 898-922.  https://doi.org/10.1007/s10915-019-01042-w
  35. Y. Jiang, C.W. Shu, M.P. Zhang, An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws, SIAM Journal on Scientific Computing, 35 (2013), 137-160. 
  36. Y. Jiang, C.W. Shu, M.P. Zhang, Free-stream preserving finite difference schemes on curvilinear meshes, Methods and Applications of Analysis, 21 (2014), 1-30.  https://doi.org/10.4310/MAA.2014.v21.n1.a1
  37. H. Liu, A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law, Applied Mathematics and Computation, 296 (2017), 182-197.  https://doi.org/10.1016/j.amc.2016.10.023
  38. Bao-Shan Wang, Peng Li, Zhen Gao, Wai Sun Don, An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws, Journal of Computational Physics, 374 (2018), 469-477.  https://doi.org/10.1016/j.jcp.2018.07.052
  39. M. Castro, B. Costa, and W.S. Don, High Order Weighted Essentially Non-Oscillatory WENO-Z schemes for hyperbolic conservation laws, Journal of Computational Physics, 230 (2011), 1766-1792 (2011).  https://doi.org/10.1016/j.jcp.2010.11.028
  40. H. Liu, J. Qiu, Finite difference Hermite WENO schemes for conservation laws, II: An alternative approach, Journal of Scientific Computing, 66 (2016), 598-624.  https://doi.org/10.1007/s10915-015-0041-4
  41. Bao-Shan Wang, Wai Sun Don, Naveen K. Garg, Alexander Kurganov, Fifth-order A-weno finite-difference schemes based on a new adaptive diffusion central numerical flux, SIAM Journal on Scientific Computing, 42 (2020), A3932-A3956.  https://doi.org/10.1137/20M1327926
  42. C.W. Shu, ENO and WENO schemes for hyperbolic conservation laws, in: B. Cockburn, C. Johnson, C.W. Shu, E. Tadmor (Eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, Springer, Berlin, 1998, 325-432 (also NASA CR- 97-206253 and ICASE-97-65 Rep., NASA Langley Research Center, Hampton [VA, USA]). 
  43. V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics, 201 (2004), 238-260.  https://doi.org/10.1016/j.jcp.2004.05.015
  44. G. Sod, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, Journal of Computational Physics, 27 (1978), 1-31.  https://doi.org/10.1016/0021-9991(78)90023-2
  45. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, New York, 1997. 
  46. P.D. Lax, Weak solutions of Nonlinear Hyperbolic Equations and their Numerical Computation, Communications on Pure and Applied Mathematics, 7 (1954), 159 -193.  https://doi.org/10.1002/cpa.3160070112
  47. P. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks, Journal of Computational Physics, 54 (1984), 115-173.  https://doi.org/10.1016/0021-9991(84)90142-6
  48. C.W. Schulz-Rinne, J.P. Collins, and H.M. Glaz, Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics, SIAM Journal on Scientific Computing, 14 (1993), 1394-1414.  https://doi.org/10.1137/0914082
  49. Y. Shi, Y. Guo, A fifth order alternative Compact-WENO finite difference scheme for compressible Euler equations, Journal of Computational Physics, 397 (2019), 108873. 
  50. Z.F. Xu, C.W. Shu, Anti-diffusive flux corrections for high order finite difference WENO schemes, Journal of Computational Physics, 205 (2005), 458-485.  https://doi.org/10.1016/j.jcp.2004.11.014
  51. R. Liska and B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM Journal on Scientific Computing, 25 (2004), 995-1017.