DOI QR코드

DOI QR Code

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen (College of Animal Science and Technology, Shihezi University) ;
  • Kai, Liao (College of Pharmacy, Shihezi University) ;
  • Herong, Liao (College of Animal Science and Technology, Shihezi University) ;
  • Li, Zhang (College of Animal Science and Technology, Shihezi University) ;
  • Haixuan, Zhao (College of Medical, Shihezi University) ;
  • Jie, Sun (College of Animal Science and Technology, Shihezi University)
  • Received : 2021.09.20
  • Accepted : 2022.01.07
  • Published : 2023.02.01

Abstract

Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China (No. 31660654 & No.31860641).

References

  1. Collins KE, Kiepper BH, Ritz CW, McLendon BL, Wilson JL. Growth, livability, feed consumption, and carcass composition of the Athens Canadian Random Bred 1955 meattype chicken versus the 2012 high-yielding Cobb 500 broiler. Poult Sci 2014;93:2953-62. https://doi.org/10.3382/ps.2014-04224
  2. Abdalla BA, Chen J, Nie QH, Zhang XQ. Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model. Front Genet 2018;9:262. https://doi.org/10.3389/fgene.2018.00262
  3. He D, Jiang Z, Tian Y, et al. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Anim Genet 2018;49:19-28. https://doi.org/10.1111/age.12611
  4. Roy BC, Walker B, Rahman MM, Bruce HL, McMullen L. Role of myofibers, perimysium and adipocytes in horse meat toughness. Meat Sci 2018;146:109-21. https://doi.org/10.1016/j.meatsci.2018.08.005
  5. Albuquerque A, Ovilo C, Nunez Y, et al. Transcriptomic profiling of skeletal muscle reveals candidate genes influencing muscle growth and associated lipid composition in portuguese local pig breeds. Animals 2021;11:1423. https://doi.org/10.3390/ANI11051423
  6. Wang Y, Chen H, Han D, et al. Correlation of the A-FABP gene polymorphism and mRNA expression with intramuscular fat content in three-yellow chicken and Hetian-Black chicken. Anim Biotechnol 2017;28:37-43. https://doi.org/10.1080/10495398.2016.1194288
  7. Liu J, Fu R, Liu R, et al. Wen. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLoS One 2016;11:e0159722. https://doi.org/10.1371/journal.pone.0159722
  8. Liu R, Wang H, Liu J, et al. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens. BMC Genomics 2017;18:816. https://doi.org/10.1186/s12864-017-4150-3
  9. Anderson DM, Anderson KM, Chang CL, et al. A micro-peptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015;160:595-606. https://doi.org/10.1016/j.cell.2015.01.009
  10. Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. The role of long noncoding RNAs in livestock adipose tissue deposition - a review. Anim Biosci 2021;34:1089-99. https://doi.org/10.5713/ab.21.0006
  11. Zhang M, Li F, Sun JW, et al. LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR128-3p and miR-27b-3p. Front Genet 2019;10:42. https://doi.org/10.3389/fgene.2019.00042
  12. Zhang M, Ma X, Zhai Y, et al. Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis. J Agric Food Chem 2020;68:3678-88. https://doi.org/10.1021/acs.jafc.9b07405
  13. Wang W, Zhang T, Wu C, et al. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS One 2017;12:e0177348. https://doi.org/10.1371/journal.pone.0177348
  14. Vucicevic M, Stevanov-Pavlovic M, Stevanovic J, et al. Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing. Zoo Biol 2013;32:269-76. https://doi.org/10.1002/zoo.21010
  15. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-9. https://doi.org/10.1038/nmeth.1923
  16. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcriptlevel expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016;11:1650-67. https://doi.org/10.1038/nprot.2016.095
  17. Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511-5. https://doi.org/10.1038/nbt.1621
  18. Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005;15:1034-50. https://doi.org/10.1101/gr.3715005
  19. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010;11:R14. https://doi.org/10.1186/gb-2010-11-2-r14
  20. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005;21:3787-93. https://doi.org/10.1093/bioinformatics/bti430
  21. Wang Y, Xue S, Liu X, et al. Analyses of long non-coding RNA and mRNA profiling using RNA sequencing during the pre-implantation phases in pig endometrium. Sci Rep 2016;6:20238. https://doi.org/10.1038/srep20238
  22. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2018;19:143-57. https://doi.org/10.1038/nrm.2017.104
  23. Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs. Anim Biosci 2022;35:115-25. https://doi.org/10.5713/ab.21.0092
  24. Mattioli K, Volders PJ, Gerhardinger C, et al. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res 2019;29:344-55. https://doi.org/10.1101/gr.242222.118
  25. Cai B, Li Z, Ma M, et al. LncRNA-Six1 encodes a micro-peptide to activate six1 in cis and is involved in cell proliferation and muscle growth. Front Physiol 2017;8:230. https://doi.org/10.3389/fphys.2017.00230
  26. Song NJ, Yun UJ, Yang S, et al. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation. Sci Rep 2016;6:19377. https://doi.org/10.1038/srep19377
  27. Gan L, Liu Z, Wu T, Feng F, Sun C. αMSH promotes preadipocyte proliferation by alleviating ER stress-induced leptin resistance and by activating Notch1 signal in mice. Biochim Biophys Acta Mol Basis Dis 2017;1863:231-8. https://doi.org/10.1016/j.bbadis.2016.10.001
  28. Doran AC, Meller N, Cutchins A, et al. The helix-loop-helix factors Id3 and E47 are novel regulators of adiponectin. Circ Res 2008;103:624-34. https://doi.org/10.1161/circresaha.108.175893
  29. Yang L, Liu Z, Ou K, et al. Evolution, dynamic expression changes and regulatory characteristics of gene families involved in the glycerophosphate pathway of triglyceride synthesis in chicken (Gallus gallus). Sci Rep 2019;9:12735. https://doi.org/10.1038/s41598-019-48893-9
  30. Fernandez-Galilea M, Tapia P, Cautivo K, Morselli E, Cortes VA. AGPAT2 deficiency impairs adipogenic differentiation in primary cultured preadipocytes in a non-autophagy or apoptosis dependent mechanism. J Biochem Biophys Res Commun 2015;467:39-45. https://doi.org/10.1016/j.bbrc.2015.09.128
  31. Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014;54:86-112. https://doi.org/10. 1016/j.plipres.2014.02.002 https://doi.org/10.1016/j.plipres.2014.02.002
  32. Meegalla Rupalie L, Billheimer Jeffrey T, Cheng Dong. Concerted elevation of acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. J Biochem Biophys Res Commun 2002;298:317-23. https://doi.org/10.1016/s0006-291x(02)02466-x
  33. Ramanathan N, Ahmed M, Raffan E, et.al. Identification and characterisation of a novel pathogenic mutation in the human lipodystrophy gene AGPAT2: C48R: a novel mutation in AGPAT2. JIMD Rep 2012;6:73-80. https://doi.org/10.1007/8904_2012_181
  34. Mul JD, Nadra K, Jagalur NB, et al. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J Biol Chem 2011;286:26781-93. https://doi.org/10.1074/jbc.M110.197947
  35. Triantafyllou EA, Georgatsou E, Mylonis I, Simos G, Paraskeva E. Expression of AGPAT2, an enzyme involved in the glycerol-phospholipid/triacylglycerol biosynthesis pathway, is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1863:1142-52. https://doi.org/10.1016/j.bbalip.2018.06.015
  36. Sim MFM, Persiani E, Talukder MMU, et al. Oligomers of the lipodystrophy protein seipin may co-ordinate GPAT3 and AGPAT2 enzymes to facilitate adipocyte differentiation. Sci Rep 2020;10:3259. https://doi.org/10.1038/s41598-020-59982-5
  37. Qiang X, Taoran T, Zhaozhao C, et al. Peroxisome proliferator-activated receptor (PPAR) in regenerative medicine: molecular mechanism for PPAR in stem cells' adipocyte differentiation. Curr Stem Cell Res Ther 2016;11:290-8. https://doi.org/10.2174/1574888X10666150902093755
  38. Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci 1995;92:9856-60. https://doi.org/10.1073/pnas.92.21.9856
  39. Rosen ED. The molecular control of adipogenesis, with special reference to lymphatic pathology. Ann NY Acad Sci 2002;979:143-58. https://doi.org/10.1111/j.1749-6632.2002.tb04875.x
  40. Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999;3:151-8. https://doi.org/10.1016/S1097-2765(00)80306-8
  41. Subauste AR, Das AK, Li X, et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes 2012;61:2922-31. https://doi.org/10.2337/db12-0004
  42. Nobusue H, Kondo D, Yamamoto M, Kano K. Effects of lysophosphatidic acid on the in vitro proliferation and differentiation of a novel porcine preadipocyte cell line. Comp Biochem Physiol B Biochem Mol Biol 2010;157:401-7. https://doi.org/10.1016/j.cbpb.2010.08.010