DOI QR코드

DOI QR Code

천연기념물 진주 충무공동 익룡·새·공룡발자국 화석산지의 오염물 형성 메커니즘과 관리방안

Contaminant Mechanism and Management of Tracksite of Pterosaurs, Birds, and Dinosaurs in Chungmugong-dong, Jinju, Korea

  • 최명주 (국립문화재연구원 보존과학연구실 ) ;
  • 원상호 (진주익룡발자국전시관 ) ;
  • 이태종 (국립문화재연구원 문화재보존과학센터 ) ;
  • 이성주 (경북대학교 지질학과 ) ;
  • 공달용 (국립해양문화재연구소 서해문화재과) ;
  • 이명성 (국립문화재연구원 보존과학연구실 )
  • Myoungju Choie (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Sangho Won (Jinju Pterosaur Tracks Museum) ;
  • Tea Jong Lee (Conservation Science Center, National Research Institute of Cultural Heritage) ;
  • Seong-Joo Lee (Department of Geology, Kyungpook National University) ;
  • Dal-Yong Kong (West Sea Cultural Heritage Division, The National Research Institute of Maritime Cultural Heritage) ;
  • Myeong Seong Lee (Conservation Science Division, National Research Institute of Cultural Heritage)
  • 투고 : 2023.08.31
  • 심사 : 2023.12.20
  • 발행 : 2023.12.29

초록

익룡 발자국의 개체 및 밀집도 측면에서 세계 최대 규모로 알려진 진주 충무공동 익룡·새·공룡발자국 화석산지는 2011년 천연기념물로 지정된 이래, 2018년 일부 화석층을 현장 보존하기 위해 보호각을 설치하였다. 이 중 제2보호각에 관리중인 화석층은 기 보고된 발자국 중 약 17%에 달하는 익룡·수각류·조각류 발자국(총 679개)이 단일 층준에서 발견되어 학술적 가치가 크지만 물리적, 화학적 손상이 지속적으로 발생하여 발자국의 관찰에 어려움이 있다. 특히 화석층 표면을 피복하는 유백색 오염물은 석고와 대기오염물로 구성된 복합체의 누적현상에서 기인한다. 오염물을 구성하는 석고는 화석층 하부층준에서 기원한 칼슘과 잔디의 생육활동으로 공급되는 황이 보호각 후방의 잔디가 식재된 토양층에서 집수된 지하수에 의해 용출되고, 보호각의 일대의 수분 순환 과정에서 화석층 표면에 증발잔류하며 결정화된다. 또 다른 오염물 구성체인 화분·광물 등은 분진 배출이 어려운 보호각 갤러리창을 통해 풍성으로 유입된다. 따라서 상이한 기원을 가진 두 오염물로부터 화석층을 보존하기 위해서는 보호각의 수분 및 대기 순환 제어와 지속적인 오염물 제거가 필요하다. 분진상의 석고와 대기 오염물은 스팀 세정법으로 충분한 제거 효과가 있으며, 암회색 셰일인 화석층은 레이저 흡수능이 커 흔적화석과 퇴적구조의 물리적 손실을 동반하는 레이저 세정법은 가급적 지양하는 것이 바람직하다.

Tracksite of pterosaurs, birds, and dinosaurs in Chungmugong-dong in Jinju was designated as a natural monument in 2011 and is known as the world's largest in terms of the number and density of pterosaur footprints. This site has been managed by installing protection buildings to conserve in 2018. About 17% of the footprints of pterosaur, theropod, and ornithopod in this site under management in the 2nd protection building are of great academic value, but observation of footprints has difficulties due to continuous physical and chemical damage. In particular, the accumulation of milk-white contaminants is formed by the gypsum and air pollutant complex. Gypsum remains evaporated with a plate or columnar shape in the process of water circulation around the 2nd protection building, and the dust is from through the inflow of the gallery windows. The aqueous solution of gypsum, consisting of calcium from the lower bed and sulfur from grass growth, is catchmented into the groundwater from the area behind the protection building. Pollen and a few minerals other constituents of contaminants, go through the gallery window, which makes it difficult to expel dust. To conserve the fossil-bearing beds from two contaminants of different origins, controlling the water and atmospheric circulation of the 2nd protection building and removing the contaminants continuously is necessary. When cleaning contaminants, the steam cleaning method is sufficiently effective for powder-shaped milk-white contaminants. The fossil-bearing bed consists of dark gray shale with high laser absorption power; the laser cleaning method accompanies physical loss to fossils and sedimentary structures; therefore, avoiding it as much as possible is desirable.

키워드

과제정보

이 연구는 문화재청 국립문화재연구원 석조문화유산 석재공급지 정보 구축 연구사업의 지원을 받아 수행되었다. 환경 모니터링에 도움을 주신 국립문화재연구원 복원기술연구실 환경팀과 아낌없는 조언을 해주신 심사위원님들께 감사드린다.

참고문헌

  1. Buzek, F. and Sramek, J. (1985) Sulfur isotopes in the study of stone monument conservation. Studies in conservation, v.30, p.171-176. doi: 10.2307/1506039.
  2. D'Angeli, I.M., Vattano, M., Parise, M. and De Waele, J. (2017) The coastal sulfuric acid cave system of Santa Cesarea Terme (southern Italy). Hypogene karst regions and caves of the world, 161-168p, doi: 10.1007/978-3-319-53348-3_9.
  3. Gahan, J. and Schmalenberger, A. (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Frontiers in plant science, v.5, p.723, doi: 10.3389/fpls.2014.00723.
  4. Gauri, K.L., Chowdhury, A.N., Kulshreshtha, N.P. and Punuru, A.R. (1989) The sulfation of marble and the treatment of gypsum crusts. Studies in Conservation, v.34, p.201-206. doi: 10.2307/1506287.
  5. Gyeong Nam Development Corporation (2016) Gyeongnam Jinju Innovation City Development Project 3rd Fossil Cultural Heritage Excavation. Gyeong Nam Development Corporation, Changwon, p.81-103.
  6. Kim, K.S., Kim, J.M., Son, M.J., Ha, S.W., Choi, J.W. and Lim, J.D. (2013) Occurrence of pterosaur tracks in the natural monument no. 534 pterosaur, bird, and dinosaur tracks fossil site, Hotandong, Jinju, Korea: world richest pterosaur tracksite. In Proceedings of the 2013 Autumn Meeting of Geol Soc Korea, Seoul, 342p.
  7. KMA National Climate Data Center (2022) https://data.kma.go.kr/
  8. Kramar, S., Urosevic, M., Pristacz, H. and Mirtic, B. (2010) Assessment of limestone deterioration due to salt formation by micro-Raman spectroscopy: application to architectural heritage. Journal of Raman Spectroscopy, v.41, p.1441-1448, doi: 10.1002/jrs.2700.
  9. Malaga-Starzec, K., Panas, I., Lindqvist, J.E. and Lindqvist, O. (2003) Efflorescence on thin sections of calcareous stones. Journal of Cultural Heritage, v.4, p.313-318, doi: 10.1016/j.culher.2003.09.002.
  10. Moropoulou, A., Polikreti, K., Ruf, V. and Deodatis, G. (2003) San Francisco Monastery, Quito, Equador: characterisation of building materials, damage assessment and conservation considerations. Journal of Cultural Heritage, v.4, p.101-108, doi: 10.1016/S1296-2074(03)00021-9.
  11. Odin, G.P., Belhadj, O., Cabaret, T., Foy, E. and Rouchon, V. (2016) Alterations of fossil-bearing shale (Autun, France; Permian), part III: Framboidal pyrite and sulfur as the main cause of efflorescence. Annales De Paleontologie, v.102, p.31-40, doi: 10.1016/j.annpal.2016.01.001.
  12. Odin, G.P., Rouchon, V., Bethoux, O. and Ren, D. (2018) Gypsum growth induced by pyrite oxidation jeopardises the conservation of fossil specimens: an example from the Xiaheyan entomofauna (Late Carboniferous, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 507, p.15-29, doi: 10.1016/j.palaeo.2018.05.035.
  13. Schweigstillova, J., Prikryl, R. and Novotna, M. (2009) Isotopic composition of salt efflorescence from the sandstone castellated rocks of the Bohemian Cretaceous Basin (Czech Republic). Environmental geology, v.58, p.217-225, doi: 10.1007/s00254-008-1510-y.
  14. Smith, B.J., Gomez-Heras, M. and Viles, H.A. (2010) Underlying issues on the selection, use and conservation of building limestone. Geological Society, London, Special Publications, v.331, p.1-11, doi: 10.1144/SP331.1.
  15. Verges-Belmin, V. (2008) Illustrated glossary on stone deterioration patterns. ICOMOS, Marne, 48p.
  16. Zehnder, K. and Schoch, O. (2009) Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. Journal of Cultural Heritage, v.10, p.319-330, doi: 10.1016/j.culher.2008.10.009.