DOI QR코드

DOI QR Code

Analyzing Effective Factors on Hydrogen Release Based on Response Surface Method and Analysis of Variance

반응표면법과 ANOVA 기반의 수소 누출에 대한 유효인자 분석

  • JUNSEO LEE (Center for Process Innovation Simulation, Chonnam National University) ;
  • SEHYEON OH (School of Chemical Engineering, Chonnam National University) ;
  • SEUNGHYO AN (School of Chemical Engineering, Chonnam National University) ;
  • EUNHEE KIM (School of Chemical Engineering, Chonnam National University) ;
  • BYUNGCHOL MA (Center for Process Innovation Simulation, Chonnam National University)
  • 이준서 (전남대학교 공정혁신 시뮬레이션센터) ;
  • 오세현 (전남대학교 화학공학부) ;
  • 안승효 (전남대학교 화학공학부) ;
  • 김은희 (전남대학교 화학공학부) ;
  • 마병철 (전남대학교 공정혁신 시뮬레이션센터)
  • Received : 2023.10.11
  • Accepted : 2023.12.26
  • Published : 2023.12.30

Abstract

While hydrogen is widely used, it has a low minimum ignition energy, raising safety concerns when using it. This research studied which parameters are the key variables in the hydrogen release and diffusion. These parameters were divided into six process variables in the initial release and two environmental variables in the dispersion. One hundred and twenty cases were selected through design of experiment, and the end-point in each case were analyzed using PHAST. Afterwards, an end-point prediction model was developed using RSM and ANOVA, and the impact of each variable on the endpoint was analyzed. As a result, the influence of eight variables was graded. The nozzle diameter had the greatest influence on the end-point, while the pipe roughness coefficient had no effect on the end-point. It is expected that these results will be used as basic data to improve safety across all fields of hydrogen handling facilities.

Keywords

Acknowledgement

이 연구는 2023년도 환경부(한국화학물질관리협회) 재원으로 화학물질 안전관리 특성화대학원 사업의 지원을 받아 수행된 연구입니다(B0080524003046).

References

  1. J. Kim, Y. Yoo, M. Seo, J. Baek, and S. Kim, "Performance analysis of adiabatic reactor in thermochemical carbon dioxide methanation process for carbon neutral methane production", Journal of Hydrogen and New Energy, Vol. 34, No. 3, 2023, pp. 316-326, doi: https://doi.org/10.7316/JHNE.2023.34.3.316.
  2. S. J. Jang, R. S. Park, Y. H. Choi, and Y. W. Hwang, "An evaluation of net-zero contribution regardinghydrogen energy conversion in urban building and transport sector", Journal of Hydrogen and New Energy, Vol. 34, No. 2, 2023, pp. 100-112, doi: https://doi.org/10.7316/JHNE.2023.34.2.100.
  3. H. Xiao, Q. Duan, and J. Sun, "Premixed flame propagation in hydrogen explosions", Renewable and Sustainable Energy Reviews, Vol. 81, Pt. 2, 2018, pp. 1988-2001, doi: https://doi.org/10.1016/j.rser.2017.06.008.
  4. W. I. Park, S. S. Tak, I. W. Lee, and S. P. Hong, "A study on hydrogen energy safety according to the revitalization of the hydrogen economy", Journal of the Korean Institute of Gas, Vol. 25, No. 6, 2021, pp. 74-79, doi: https://doi.org/10.7842/kigas.2021.25.6.74.
  5. J. Kim, "Air pollutant reduction effect on road mobility in hydrogen economy era", Journal of Hydrogen and New Energy, Vol. 31, No. 6, 2020, pp. 522-529, doi: https://doi.org/10.7316/KHNES.2020.31.6.522.
  6. M. W. Lee, S. K. Kim, S. S. Tak, and D. T. Kim, "Effect analysis of the pre-consulting system of hydrogen refueling station for expanding the hydrogen mobility infrastructure", Journal of the Korean Institute of Gas, Vol. 25, No. 6, 2021, pp. 85-91, doi: https://doi.org/10.7842/kigas.2021.25.6.85.
  7. D. A. Crowl and Y. D. Jo, "The hazards and risks of hydrogen", Journal of Loss Prevention in the Process Industries, Vol. 20, No. 2, 2007, pp. 158-164, doi: https://doi.org/10.1016/j.jlp.2007.02.002.
  8. I. Mohammadfam and E. Zarei, "Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: a comprehensive risk analysis framework", International Journal of Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13653-13663, doi: https://doi.org/10.1016/j.ijhydene.2015.07.117.
  9. WHA INTERNATIONAL, INC., "Case study: power plant hydrogen explosion", WHA INTERNATIONAL, INC., 2022. Retrieved from https://wha-international.com/case-study-power-plant-hydrogen-explosion/.
  10. Y. Liu, J. Wei, G. Lei, T. Wang, Y. Lan, H. Chen, and T. Jin, "Modeling the development of hydrogen vapor cloud considering the presence of air humidity", International Journal of Hydrogen Energy, Vol. 44, No. 3, 2019, pp. 2059-2068, doi: https://doi.org/10.1016/j.ijhydene.2018.11.123.
  11. R. Sun, L. Pu, H. Yu, M. Dai, and Y. Li, "Modeling the diffusion of flammable hydrogen cloud under different liquid hydrogen leakage conditions in a hydrogen refueling station", International Journal of Hydrogen Energy, Vol. 47, No. 61, 2022, pp. 25849-25863, doi: https://doi.org/10.1016/j.ijhydene.2022.05.303.
  12. J. Mousavi and M. Parvini, "A sensitivity analysis of parameters affecting the hydrogen release and dispersion using ANOVA method", International Journal of Hydrogen Energy, Vol. 41, No. 9, 2016, pp. 5188-5201, doi: https://doi.org/10.1016/j.ijhydene.2016.01.042.
  13. J. Mousavi and M. Parvini, "Analyzing effective factors on leakage-induced hydrogen fires", Journal of Loss Prevention in the Process Industries, Vol. 40, 2016, pp. 29-42, doi:https://doi.org/10.1016/j.jlp.2015.12.002.
  14. J. Sakamoto, R. Sato, J. Nakayama, N. Kasai, T. Shibutani, and A. Miyake, "Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA", International Journal of Hydrogen Energy, Vol. 41, No. 46, 2016, pp. 21564-21570, doi: https://doi.org/10.1016/j.ijhydene.2016.08.060.
  15. J. Cho, S. Park, S. Song, and K. B. Hur, "A numerical study on performance of a heavy-duty diesel engine for power generation under natural gas-diesel dual fuel operation", Journal of the Korean Institute of Gas, Vol. 19, No. 2, 2015, pp. 29-36, doi: https://doi.org/10.7842/kigas.2015.19.2.29.
  16. W. H. Chen, M. C. Uribe, E. E. Kwon, K. Y. A. Lin, Y. K. Park, L. Ding, and L. H. Saw, "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)", Renewable and Sustainable Energy Reviews, Vol. 169, 2022, pp. 112917, doi: https://doi.org/10.1016/j.rser.2022.112917.
  17. W. H. Chen, C. M. Chang, J. K. Mutuku, S. S. Lam, and W. J. Lee, "Analysis of microparticle deposition in the human lung by taguchi method and response surface methodology", Environmental Research, Vol. 197, 2021, pp. 110975, doi: https://doi.org/10.1016/j.envres.2021.110975.
  18. S. Amiri, V. Vatanpour, and T. He, "Optimization of effective parameters in arsenite oxidation process with Cl2, H2O2, and O3 using response surface methodology", Chemical Engineering and Processing - Process Intensification, Vol. 181, 2022, pp. 109167, doi: https://doi.org/10.1016/j.cep.2022.109167.
  19. B. E. Yuce, P. V. Nielsen, and P. Wargocki, "The use of Taguchi, ANOVA, and GRA methods to optimize CFD analyses of ventilation performance in buildings", Building and Environment, Vol. 225, 2022, pp. 109587, doi: https://doi.org/10.1016/j.buildenv.2022.109587.
  20. M. S. Hossain, N. A. Rahim, M. M. Aman, and J. Selvaraj, "Application of ANOVA method to study solar energy for hydrogen production", International Journal of Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 14571-14579, doi: https://doi.org/10.1016/j.ijhydene.2019.04.028.
  21. J. G. Lee, "A study on the determination of explosion hazardous distance due to the hydrogen leakage from Packaged reformer using CFD [Master's thesis]", Busan: Pukyong National University, 2022.
  22. J. H. Yoo, M. S. Kim, and J. W. Ko, "Development of emergency response system for toxic gas facilities using quantitative risk analysis", Journal of the Korean Institute of Gas, Vol. 9, No. 2, 2005, pp. 43-49. Retrieved from https://koreascience. kr/article/JAKO200502612966077.page?&lang=en.
  23. Korea Occupational Safety and Health Agency (KOSHA), "Guideline for source term modeling (KOSHA P-92-2023)", KOSHA, 2023. Retrieved from https://www.kosha.or.kr/kosha/data/guidanceP.do.
  24. N. Pandya, N. Gabas, and E. Marsden, "Sensitivity analysis of Phast's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine)", Journal of Loss Prevention in the Process Industries, Vol. 25, No. 1, 2012, pp. 20-32, doi: https://doi.org/10.1016/j.jlp.2011.06.015.
  25. J. H. Lee, I. S. Woo, H. J. Lee, Y. W. Chon, I. B. Lee, T. O. Kim, M. H. Hwang, and J. Y. Lee, "Analysis of financial risk and ventilation effect in the hydrogen fuel cell system", The Journal of Risk Management, Vol. 23, No. 1, 2012, pp. 85-114, doi: https://doi.org/10.21480/tjrm.23.1.201206.004.
  26. Korea Occupational Safety and Health Agency (KOSHA), "Guideline for safety of hydrogen fuelling station (KOSHA P-30-2021)", KOSHA, 2021. Retrieved from https://www.kosha.or.kr/kosha/data/guidanceP.do.
  27. H. W. M. Witlox, M. Fernandez, M. Harper, A. Oke, J. Stene, and Y. Xu, "Verification and validation of Phast consequence models for accidental releases of toxic or flammable chemicals to the atmosphere", Journal of Loss Prevention in the Process Industries, Vol. 55, 2018, pp. 457-470, doi: https://doi.org/10.1016/j.jlp.2018.07.014.