DOI QR코드

DOI QR Code

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production

수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구

  • HYUNSEUNG BYUN (Technology Lab, Technology Department, Bio Friends Inc.) ;
  • YUNJI KU (Technology Lab, Technology Department, Bio Friends Inc.) ;
  • JUHEE OH (Technology Lab, Technology Department, Bio Friends Inc.) ;
  • JAESUNG BAN (Technology Lab, Technology Department, Bio Friends Inc.) ;
  • YOUNGJIN RAH (Technology Lab, Technology Department, Bio Friends Inc.) ;
  • JESEOL LEE (Technology Lab, Technology Department, Bio Friends Inc.) ;
  • WONJUN CHO (Technology Lab, Technology Department, Bio Friends Inc.)
  • 변현승 ((주)바이오프랜즈 기술본부 기술연구소) ;
  • 구윤지 ((주)바이오프랜즈 기술본부 기술연구소) ;
  • 오주희 ((주)바이오프랜즈 기술본부 기술연구소) ;
  • 반재성 ((주)바이오프랜즈 기술본부 기술연구소) ;
  • 나영진 ((주)바이오프랜즈 기술본부 기술연구소) ;
  • 이제설 ((주)바이오프랜즈 기술본부 기술연구소) ;
  • 조원준 ((주)바이오프랜즈 기술본부 기술연구소)
  • Received : 2023.10.11
  • Accepted : 2023.11.14
  • Published : 2023.12.30

Abstract

As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

Keywords

Acknowledgement

본 연구는 스마트팜 다부처패키지 혁신기술개발 사업 중 '시설 온실용 연료전지 배열 에너지 순환 및 CO2 자원화 기술 개발' 과제(No. 421038-03)의 지원을 받았습니다.

References

  1. V. Dieterich, A. Buttler, A. Hanel, H. Spliethoffab, and S. Fendt, "Power-to-liquid via synthesis of methanol, DME or Fischer-Tropsch-fuels: a review", Energy& Environmental Science, Vol. 13, No. 10, 2020, pp. 3207-3252, doi: https://doi.org/10.1039/D0EE01187H. 
  2. D. H. Kim, S. D. Lee, B. G. Lee, M. J. Kim, S. I. Hong, and D. J. Moon, "Development of Ni-based catalyst for hydrogen production with steam reforming of light hydrocarbon", New & Renewable Energy, Vol. 4, No. 4, 2008, pp. 80-87. Retrieved from https://koreascience.kr/article/JAKO200805441021039.page.  1021039.page
  3. Y. Tanaka, R. Kikuchi, T. Takeguchi, and K. Eguchi, "Steam reforming of dimethyl ether over composite catalysts of γ-Al2O3 and Cu-based spinel", Applied Catalysis B: Environmental, Vol. 57, No. 3, 2005, pp. 211-222, doi: https://doi.org/10.1016/j.apcatb.2004.11.007. 
  4. M. Yang, Y. Men, S. Li, and G. Chen, "Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bifunctional catalyst", International Journal of Hydrogen Energy, Vol. 37, No. 10, 2012, pp. 8360-8369, doi: https://doi.org/10.1016/j.ijhydene.2012.02.070. 
  5. K. Faungnawakij, N. Shimoda, N. Viriya-empikul, R. Kikuchi, and K. Eguchi, "Limiting mechanisms in catalytic steam reforming of dimethyl ether", Applied Catalysis B: Environmental, Vol. 97, No. 1-2, 2010, pp. 21-27, doi: https://doi.org/10.1016/j.apcatb.2010.03.010. 
  6. N. Shimoda, K. Faungnawakij, R. Kikuchi, and K. Eguchi, "Degradation and regeneration of copper-iron spinel and zeolite composite catalysts in steam reforming of dimethyl ether", Applied Catalysis A: General, Vol. 378, No. 2, 2010, pp. 234-242, doi: https://doi.org/10.1016/j.apcata.2010.02.027. 
  7. M. Turco, G. Bagnasco, C. Cammarano, L. Micoli, M. Lenarda, E. Moretti, L. Storaro, and A. Talon, "The role of H2O and oxidized copper species in methanol steam reforming on a Cu/CeO2/Al2O3 catalyst prepared by one-pot sol-gel method", Applied Catalysis B: Environmental , Vol. 102, N o. 3-4, 2011, pp. 387-394, doi: https://doi.org/10.1016/j.apcatb.2010.12.010. 
  8. S. D. Jones and H. E. Hagelin-Weaver, "Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3", Applied Catalysis B: Environmental, Vol. 90, No. 1-2, 2009, pp. 195-204, doi: https://doi.org/10.1016/j.apcatb.2009.03.013. 
  9. P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schlogl, and T. Ressler, "Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming-a comparative study", Applied Catalysis A: General, Vol. 348, No. 2, 2008, pp. 153-164, doi: https://doi.org/10.1016/j.apcata.2008.06.020. 
  10. L. Oar-Arteta, F. Epron, N. Bion, A. T. Aguayo, and A. G. Gayubo, "Comparison in dimethyl ether steam reforming of conventional Cu-ZnO-Al2O3 and supported Pt metal catalysts", Chemical Engineering Transactions, Vol. 37, 2014, pp. 487-492, doi: https://doi.org/10.3303/CET1437082. 
  11. Y. Baek, Y. B. Yang, Y. Oh, W. I. Cho, and B. J. Kim, "Hydrogen production from DME (dimethyl ether)" Korean Society for New and Renewable Energy conference abstract collection, 2006, pp. 93-95. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06188549.