Acknowledgement
This work was supported in part by the Innovation Platform and Talent Program of Hunan Province under Grant 2021RC2095, in part by Natural Science Foundation of China under Grant 62003288, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515140009, in part by Science and Technology Research Project of Guizhou Province under Grant Qiankehe Basic-ZK[2022]General 17, and in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022GK2050.
References
- Wang, A., Zhang, H., Jiang, J., et al.: Predictive direct torque control of permanent magnet synchronous motors using deadbeat torque and flux control. J. Power Electron. 23, 264-273 (2023) https://doi.org/10.1007/s43236-022-00542-7
- Zhong, Y., Li, W., Zhou, L., et al.: Modulation method of parallel interleaved three-level inverter considering neutral point potential and phase current balance. J. Power Electron. 23, 241-251 (2023) https://doi.org/10.1007/s43236-022-00568-x
- Gupta, M., Venkataraman, G.: A DC-to-three-phase boost-buck inverter with stored energy modulation and a tiny DC-link capacitor. IEEE Trans. Ind. Appl. 53, 1280-1288 (2017) https://doi.org/10.1109/TIA.2016.2640198
- Kan, S., Ruan, X., Huang, X., Dang, H.: Second harmonic current reduction for flying capacitor clamped boost three-level converter in photovoltaic grid-connected inverter. IEEE Trans. Power Electron. 36, 1669-1679 (2021) https://doi.org/10.1109/TPEL.2020.3007806
- Yang, F., Ge, H., Yu, Z., Li, Y., Wu, H.: Topology and control of four-quadrant dual-DC-port dual-buck inverters for semi-two-stage DC-AC power conversion. IEEE Trans Ind. Electron. 68, 10718-10729 (2021) https://doi.org/10.1109/TIE.2020.3034866
- Peng, F.Z.: Z-source inverter. IEEE Trạns. Ind. Appl. 39, 504-510 (2003) https://doi.org/10.1109/TIA.2003.808920
- Siwakoti, Y.P., Blaabjerg, F., Galigekere, V.P., Ayachit, A., Kazimierczuk, M., K.: A Y-source impedance network. IEEE Trans. Power Electron. 31, 8081-8087 (2014)
- Mo, W., Loh, P.C., Blaabjerg, F.: Asymmetrical Γ-source inverters. IEEE Trans. Ind. Electron. 61, 637-647 (2014) https://doi.org/10.1109/TIE.2013.2253066
- Jena, K., Panigrahi, C.K., Gupta, K.K., et al.: Generalized switched-capacitor multilevel inverter topology with self-balancing capacitors. J. Power Electron. 22, 1617-1626 (2022) https://doi.org/10.1007/s43236-022-00456-4
- Siddique, M.D., Mekhilef, S., Shah, N.M., et al.: New switched-capacitor-based boost inverter topology with reduced switch count. J. Power Electron. 20, 926-937 (2020) https://doi.org/10.1007/s43236-020-00102-x
- Janabi, A., Wang, B.: Switched-capacitor voltage boost converter for electric and hybrid electric vehicle drives. IEEE Trans. Power Electron. 35, 5615-5624 (2020)
- Tran, T.T., Nguyen, M.K., Duong, T.D., Choi, J.H., Lim, Y.C., Zare, F.: A switched-capacitor-voltage-doubler based boost inverter for common-mode voltage reduction. IEEE Access 7, 98618-98629 (2019) https://doi.org/10.1109/ACCESS.2019.2930122
- Nguyen, M.K., Duong, T.D., Lim, Y.C., Choi, J.H.: High voltage gain quasi-switched boost inverters with low input current ripple. IEEE Trans Ind. Imformat. 15, 4857-4866 (2019) https://doi.org/10.1109/TII.2018.2806933
- Nguyen, M.K., Duong, T.D., Lim, Y.C., Kim, Y.G.: Switched-capacitor quasi-switched boost inverters. IEEE Trans. Ind. Electron. 65, 5105-5113 (2018) https://doi.org/10.1109/TIE.2017.2772179
- Wang, W., Wang, P., Li, B., et al.: A bidirectional DC-DC converter with high voltage conversion ratio and zero ripple current for battery energy storage system. IEEE Trans. Power Electron. 36, 8012-8027 (2021) https://doi.org/10.1109/TPEL.2020.3048043
- Erickson, R., Erickson, W., Maksimovic, D.: Fundamental of power electronic. Springer, Boston (2001)
- Rashid, M.H.: Power Electronics Handbook. Butterworth-Heinemann, Oxford (2018)