DOI QR코드

DOI QR Code

Stray capacitances influences of various parallel primary windings in input-series transformer-integration flyback converters

  • Junjie Xie (School of Mechanical and Electrical Engineering, Heilongjiang University) ;
  • Yichen Chang (School of Mechanical and Electrical Engineering, Heilongjiang University) ;
  • Tao Meng (School of Mechanical and Electrical Engineering, Heilongjiang University)
  • Received : 2023.02.27
  • Accepted : 2023.07.02
  • Published : 2023.12.20

Abstract

In this paper, the influences of stray capacitances are explored for various parallel arrangements of primary windings (PWs) in input-series transformer-integration (ISTI) flyback converters. On this basis, selecting the principle of the basic parallel PWs arrangements is clarified in the design process. First, the influences caused by the energy changes of stray capacitances are analyzed for PWs in ISTI converter. Based on this, the arrangements of single PWs and various parallel PWs are presented. Second, the energy influences of both the inner and inter-winding capacitances are analyzed and compared for two basic parallel PWs in an ISTI converter. In addition, selecting the principle of these PWs arrangements is summarized. Finally, four integrated transformers with various PW arrangements are designed, and experimental comparisons are implemented on a 1000 Vdc/48 W ISTI flyback converter. Through the obtained results, the validity of theoretical analysis is verified.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (51677056), Natural Science Foundation of Heilongjiang Province (LH2021E100), and Basic Scientific Research Projects of Provincial Colleges and Universities in Heilongjiang Province (2022-KYYWF-1110).

References

  1. Xu, W., Zhao, Z., Jiang, Q.: Calculation method for parasitic capacitance of high-frequency transformers. J. Tsinghua Univ. 61(10), 1088-1096 (2021)
  2. Shen, Z., Wang, H.: Parasitics of orthocyclic windings in inductors and transformers. IEEE Trans. Power Electron. 36(2), 1994-2008 (2021) https://doi.org/10.1109/TPEL.2020.3006882
  3. Thummala, P., Schneider, H., Zhang, Z., Ouyang, Z., Knott, A., Andersen, M.A.E.: Effcienc optimization by considering the high-voltage flyback transformer parasitics using an automatic winding layout technique. IEEE Trans. Power Electron. 30(10), 5755-5768 (2015) https://doi.org/10.1109/TPEL.2014.2379439
  4. Musznicki, P., Chrzan, P.J., Rucinski, M., Kolincio, M.: Adaptive estimation of the transformer stray capacitances for DC-DC converter modelling. IET Power Electron. 9(15), 2865-2870 (2016) https://doi.org/10.1049/iet-pel.2016.0053
  5. Aghaei, M., Kaboli, S.: On the effect of disorder on stray capacitance of transformer winding in high-voltage power supplies. IEEE Trans. Ind. Electron. 64(5), 3608-3618 (2017) https://doi.org/10.1109/TIE.2017.2652381
  6. Dalessandro, L., Cavalcante, F.S., Kolar, J.W.: Self-capacitance of high-voltage transformers. IEEE Trans. Power Electron. 22(5), 2081-2092 (2007) https://doi.org/10.1109/TPEL.2007.904252
  7. Zhang, Z., Liu, C., Wang, M., Si, Y., Liu, Y., Lei, Q.: High-efficiency high-power-density CLLC resonant converter with low-stray-capacitance and well-heat-dissipated planar transformer for EV on-board charger. IEEE Trans. Power Electron. 35(10), 10831-10851 (2020) https://doi.org/10.1109/TPEL.2020.2980313
  8. Zhao, Z., Gong, C., Qin, H.: Effect factors on stray capacitances in high frequency transformers. Proc. China Soc. Elect. Eng. 28(9), 55-60 (2008)
  9. Meng, X., Li, C., Meng, T., An, Y.: Analysis and design of a transformer windings schemes in multiple-output flyback auxiliary power supplies with high-input voltage. J. Power Electron. 19(5), 1122-1132 (2019)
  10. Biela, J., Kolar, J.W.: Using transformer parasitics for resonant converters-a review of the calculation of the stray capacitance of transformers. IEEE Trans. Ind. Appl. 44(1), 223-233 (2008) https://doi.org/10.1109/TIA.2007.912722
  11. Liu, X., Deng, Z., Qiu, Q., Wang, R., Deng, Y., He, X.: Analytical estimation method of winding parasitic capacitance for high-frequency high-voltage application. IEEE Access. 8, 73746-73755 (2020) https://doi.org/10.1109/ACCESS.2020.2987081
  12. Ranstad, P., Nee, H.P.: On the distribution of ac and dc winding capacitances in high-frequency power transformers with rectifier loads. IEEE Trans. Ind. Electron. 58(5), 1789-1798 (2011) https://doi.org/10.1109/TIE.2010.2055773
  13. Deng, L., Wang, P., Li, X., Xiao, H., Peng, T.: Investigation on the parasitic capacitance of high frequency and high voltage transformers of multi-section windings. IEEE Access. 8, 14065-14073 (2020) https://doi.org/10.1109/ACCESS.2020.2966496
  14. Tummala, P., Schneider, H., Zhang, Z., Andersen, M.A.E.: Investigation of transformer winding architectures for high-voltage (2.5 kV) capacitor charging and discharging applications. IEEE Trans. Power Electron. 31(8), 5786-5796 (2016) https://doi.org/10.1109/TPEL.2015.2491638
  15. Zhang, H., Wang, S., Li, Y., Wang, Q., Fu, D.: Two-capacitor transformer winding capacitance models for common-mode EMI noise analysis in isolated dc-dc converters. IEEE Trans. Power Electron. 32(11), 8458-8469 (2017)
  16. Fei, C., Yang, Y., Li, Q., Lee, F.C.: Shielding technique for planar matrix transformers to suppress common-mode EMI noise and improve efficiency. IEEE Trans. Ind. Electron. 65(2), 1263-1272 (2018) https://doi.org/10.1109/TIE.2017.2733473
  17. Saket, M.A., Ordonez, M., Shafei, N.: Planar transformers with near-zero common-mode noise for flyback and forward converters. IEEE Trans. Power Electron. 33(2), 1554-1571 (2018) https://doi.org/10.1109/TPEL.2017.2679717
  18. Han, Y., Li, G., Shi, H., Wu, X.: Analysis and suppression of common-mode EMI noise in 1 MHz 380 V-12 V DCX converter with low NFoM devices. IEEE Trans. Power Electron. 36(7), 7903-7913 (2021) https://doi.org/10.1109/TPEL.2020.3042632
  19. Ma, D., Chen, W., Ruan, X.: A review of voltage/current sharing techniques for series-parallel-connected modular power conversion systems. IEEE Trans. Power Electron. 35(11), 12383-12400 (2020) https://doi.org/10.1109/TPEL.2020.2984714
  20. Duan, J., Zhang, D., Wang, L., Zhou, Z., Gu, Y.: A building block method for input-series-connected dc/dc converters. IEEE Trans. Power Electron. 36(3), 3063-3077 (2021) https://doi.org/10.1109/TPEL.2020.3014505
  21. Giri, R., Choudhary, V., Ayyanar, R., Mohan, N.: Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and load-current sharing. IEEE Trans. Ind. Appl. 42(4), 1101-1111 (2006) https://doi.org/10.1109/TIA.2006.876064
  22. Qu, L., Zhang, D., Zhang, B.: Input voltage sharing control scheme for input series and output parallel connected DC-DC converters based on peak current control. IEEE Trans. Ind. Electron. 66(1), 429-439 (2019) https://doi.org/10.1109/TIE.2018.2829691
  23. Pagliosa, M.A., Faust, R.G., Lazzarin, T.B., Barbi, I.: Input-series and output-series connected modular single-switch flyback converter operating in the discontinuous conduction mode. IET Power Electron. 9(9), 1962-1970 (2016) https://doi.org/10.1049/iet-pel.2015.0935
  24. Pagliosa, M.A., Lazzarin, T.B., Barbi, I.: Modular two-switch flyback converter and analysis of voltage-balancing mechanism for input-series and output-series connection. IEEE Trans. Power Electron. 34(9), 8317-8328 (2019)
  25. Hu, Q., Zane, R.: LED driver circuit with series-input-connected converter cells operating in continuous conduction mode. IEEE Trans. Power Electron. 25(3), 574-582 (2010) https://doi.org/10.1109/TPEL.2009.2029337
  26. Yang, W., Zhang, Z., Yang, S.: A new control strategy for input voltage sharing in input series output independent modular dc-dc converters. J. Power Electron. 17(3), 632-640 (2017) https://doi.org/10.6113/JPE.2017.17.3.632
  27. Yang, J., Zhang, Z., Sun, K., Yang, W., Yang, S., Li, F., Yao, Y.: Series input multiple outputs flyback auxiliary power supply for input series-output parallel/input series-output series system. IET Power Electron. 12(9), 2285-2294 (2019) https://doi.org/10.1049/iet-pel.2018.6227
  28. Meng, T., Ben, H., Song, Y., Li, C.: Analysis and design of an input-series two-transistor forward converter for high-input voltage multiple-output applications. IEEE Trans. Ind. Electron. 65(1), 270-279 (2018) https://doi.org/10.1109/TIE.2017.2716913
  29. Meng, T., Ben, H., Song, Y., Li, C.: Analysis and suppression of the circulating current influence in the input-series auxiliary power supply for high-input-voltage applications. IEEE Trans. Power Electron. 34(7), 6533-6543 (2019) https://doi.org/10.1109/TPEL.2018.2876299
  30. Meng, T., Ben, H., Li, C.: An input-series flyback converter with the coupled-inductor-based passive snubber for high-input voltage multiple-output applications. IEEE Trans. Ind. Electron. 66(6), 4344-4355 (2019) https://doi.org/10.1109/TIE.2018.2868025
  31. Wang, Y., Kim, S.Y., Zhang, H., Chen, Y., Park, S.J.: Design and analysis of an input-series quasi-resonant flyback high-voltage SMPS based on an integrated-transformer. IET Power Electron. 15(11), 1058-1074 (2022) https://doi.org/10.1049/pel2.12291
  32. Meng, T., Ben, H., Li, C.: A four-capacitor model for interprimary-winding capacitances analysis in the input-series transformer-integration converters. IEEE Trans. Ind. Electron. 70(1), 373-383 (2023) https://doi.org/10.1109/TIE.2022.3148727
  33. Meng, T., Ben, H., Li, C., Wu, F.: Investigation of the integrated-transformer winding architectures in the input-series flyback auxiliary power supply considering the stray capacitances. IEEE Trans. Power Electron. 36(2), 1790-1803 (2021) https://doi.org/10.1109/TPEL.2020.3007887
  34. Meng, T., Ben, H., Wang, S., Li, C.: A parallel primary windings scheme for the flyback input-series transformer-integration converter. IEEE Trans. Power Electron. 37(8), 9468-9480 (2022) https://doi.org/10.1109/TPEL.2022.3157826