DOI QR코드

DOI QR Code

Antiviral effect of fucoxanthin obtained from Sargassum siliquastrum (Fucales, Phaeophyceae) against severe acute respiratory syndrome coronavirus 2

  • Nalae Kang (Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Seong-Yeong Heo (Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Eun-A Kim (Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Seon-Heui Cha (Department of Marine Bio and Medical Sciences, Hanseo University) ;
  • Bomi Ryu (Major of Food Science and Nutrition, Pukyong National University) ;
  • Soo-Jin Heo (Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST))
  • Received : 2023.09.25
  • Accepted : 2023.11.29
  • Published : 2023.12.21

Abstract

Human coronavirus diseases, particularly severe acute respiratory syndrome coronavirus 2, still remain a persistent public health issue, and many recent studies are focusing on the quest for new leads against coronaviruses. To contribute to this growing pool of knowledge and explore the available marine natural products against coronaviruses, this study investigated the antiviral effects of fucoxanthin isolated from Sargassum siliquastrum-a brown alga found on Jeju Island, South Korea. The antiviral effects of fucoxanthin were confirmed in severe acute respiratory syndrome coronavirus 2-infected Vero cells, and its structural characteristics were verified in silico using molecular docking and molecular dynamic simulations and in vitro colorimetric method. Fucoxanthin inhibited the infection in a concentration-dependent manner, without showing cytotoxicity. Molecular docking simulations revealed that fucoxanthin binds to the angiotensinconverting enzyme 2-spike protein (binding energy -318.306 kcal mol-1) and main protease (binding energy -205.118 kcal mol-1). Moreover, molecular dynamic simulations showed that fucoxanthin remains docked to angiotensin-converting enzyme 2-spike protein for 20 ns, whereas it breaks away from main protease after 3 ns. Also, the in silico prediction of the fucoxanthin was verified through the in vitro colorimetric method by inhibiting the binding between angiotensinconverting enzyme 2 and spike protein in a concentration-dependent manner. These results indicate that fucoxanthin exhibits antiviral effects against severe acute respiratory syndrome coronavirus 2 by blocking the entry of the virus. Therefore, fucoxanthin from S. siliquastrum can be a potential candidate for treating coronavirus infection.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST), funded by the Ministry of Oceans and Fisheries, Korea (20210466), and research grants from the Korea Institute of Ocean Science and Technology (grant. No. PEA0126). Also, we are grateful to the Institut Pasteur Korea for assistance with in vitro experiments.

References

  1. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., the International Natural Product Sciences Taskforce & Supuran, C. T. 2021. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20:200-216. https://doi.org/10.1038/s41573-020-00114-z
  2. Calixto, J. B. 2019. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 91:e20190105.
  3. Choi, C. G., Lee, J. I., Hwang, I. K. & Boo, S. M. 2021. A simple method to produce fragment seedstock for aquaculture of Pterocladiella capillacea (Gelidiales, Rhodophyta). Algae 36:327-332. https://doi.org/10.4490/algae.2021.36.11.20
  4. Choudhary, S., Malik, Y. S. & Tomar, S. 2020. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front. Immunol. 11:1664.
  5. Choudhary, S. & Silakari, O. 2020. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Virus Res. 289:198146.
  6. Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., Liu, X., Xiao, G., Jiang, H., Rao, Z., Zhang, L.-K., Xu, Y., Yang, H. & Liu, H. 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368:1331-1335. https://doi.org/10.1126/science.abb4489
  7. da Silva Antonio, A., Wiedemann, L. S. M. & Veiga-Junior, V. F. 2020. Natural products' role against COVID-19. RSC Adv. 10:23379-23393.
  8. Deswal, Y., Asija, S., Tufail, A., Dubey, A., Deswal, L., Kumar, N., Saroya, S., Kirar, J. S. & Gupta, N. M. 2023. Instigating the in vitro antidiabetic activity of new tridentate Schiff base ligand appended M(II) complexes: from synthesis, structural characterization, quantum computational calculations to molecular docking, and molecular dynamics simulation studies. Appl. Organomet. Chem. 37:e7050.
  9. Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M. M., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M. & Eissa, I. H. 2022. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: in vitro anticancer and VEGFR-2 inhibitory effects. Molecules 27:4606.
  10. Gammone, M. A. & D'Orazio, N. 2015. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 13:2196-2214. https://doi.org/10.3390/md13042196
  11. Gonzalez-Rayas, J. M., Rayas-Gomez, A. L., Garcia-Gonzalez, J. J., Gonzalez-Yanez, J. M., Hernandez-Hernandez, J. A. & Lopez-Sanchez, R. D. C. 2020. COVID-19 and ACEinhibitors and angiotensin receptor blockers-: the need to differentiate between early infection and acute lung injury. Rev. Colomb. Cardiol. 27:129-131.
  12. Guterres, H. & Im, W. 2020. Improving protein-ligand docking results with high-throughput molecular dynamics simulations. J. Chem. Inf. Model. 60:2189-2198. https://doi.org/10.1021/acs.jcim.0c00057
  13. Heo, S.-J. & Jeon, Y.-J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B 95:101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011
  14. Heo, S.-J., Ko, S.-C., Kang, S.-M., Kang, H.-S., Kim, J.-P., Kim, S.-H., Lee, K.-W., Cho, M.-G. & Jeon, Y.-J. 2008. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. Eur. Food Res. Technol. 228:145-151. https://doi.org/10.1007/s00217-008-0918-7
  15. Heo, S.-J., Yoon, W.-J., Kim, K.-N., Oh, C., Choi, Y.-U., Yoon, K.-T., Kang, D.-H., Qian, Z.-J., Choi, I.-W. & Jung, W.-K. 2012. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Chem. Toxicol. 50:3336-3342. https://doi.org/10.1016/j.fct.2012.06.025
  16. Hwang, E. K., Boo, G. H., Graf, L., Yarish, C., Yoon, H. S. & Kim, J. K. 2022. Kelps in Korea: from population structure to aquaculture to potential carbon sequestration. Algae 37:85-103. https://doi.org/10.4490/algae.2022.37.3.3
  17. Jadhav, A., Dash, R., Hirwani, R. & Abdin, M. 2018. Sequence and structure insights of kazal type thrombin inhibitor protein: studied with phylogeny, homology modeling and dynamic MM/GBSA studies. Int. J. Biol. Macromol. 108:1045-1052. https://doi.org/10.1016/j.ijbiomac.2017.11.020
  18. Jayaraman, M., Loganathan, L., Muthusamy, K. & Ramadas, K. 2021. Virtual screening assisted discovery of novel natural products to inhibit the catalytic mechanism of Mycobacterium tuberculosis inhA. J. Mol. Liquids 335:116204.
  19. Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S. Y., Park, S., Shum, D. & Kim, S. 2020. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 64:e00819-20. https://doi.org/10.1128/AAC.00819-20
  20. Jiksing, C., Ongkudon, M. M., Thien, V. Y., Rodrigues, K. F. & Yong, W. T. L. 2022. Recent advances in seaweed seedling production: a review of eucheumatoids and other valuable seaweeds. Algae 37:105-121. https://doi.org/10.4490/algae.2022.37.5.11
  21. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L .W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289-293. https://doi.org/10.1038/s41586-020-2223-y
  22. Kang, N., Heo, S.-Y., Cha, S.-H., Ahn, G. & Heo, S.-J. 2022. In silico virtual screening of marine aldehyde derivatives from seaweeds against SARS-CoV-2. Mar. Drugs 20:399.
  23. Kang, N., Kim, E.-A., Heo, S.-Y. & Heo, S.-J. 2023. Structurebased in silico screening of marine phlorotannins for potential walrus calicivirus inhibitor. Int. J. Mol. Sci. 24:15774.
  24. Katsiki, N. & Ferrannini, E. 2020. Anti-inflammatory properties of antidiabetic drugs: a "promised land" in the COVID-19 era? J. Diabetes Complications 34:107723.
  25. Khalifa, S. A. M., Elias, N., Farag, M. A., Chen, L., Saeed, A., Hegazy, M.-E. F., Moustafa, M. S., Abd El-Wahed, A., Al-Mousawi, S. M., Musharraf, S. G., Chang, F.-R., Iwasaki, A., Suenaga, K., Alajlani, M., Goransson, U. & El-Seedi, H. R. 2019. Marine natural products: a source of novel anticancer drugs. Mar. Drugs 17:491.
  26. Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J. & Singh, A. K. 2020. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2'-O-ribose methyltransferase. J. Biomol. Struct. Dyn. 39:2679-2692. https://doi.org/10.1080/07391102.2020.1753577
  27. Kim, S. H., Kim, Y. D., Hwang, M. S., Hwang, E. K. & Yoo, H. I. 2021. Temperature ranges for survival and growth of juvenile Saccharina sculpera (Laminariales, Phaeophyta) and applications for field cultivation. Algae 36:231-240. https://doi.org/10.4490/algae.2021.36.11.21
  28. Lee, H. G., Nagahawatta, D. P., Liyanage, N. M., Jayawardhana, H. H. A. C. K., Yang, F., Je, J. G., Kang, M. C., Kim, H. S. & Jeon, Y. J. 2022. Structural characterization and anti-inflammatory activity of fucoidan isolated from Ecklonia maxima stipe. Algae 37:239-247. https://doi.org/10.4490/algae.2022.37.9.12
  29. Lee, J. H., Ahn, G., Ko, J. Y., Kang, N., Jung, K., Han, E. J., Kim, G. H., Kim, H. J., Choi, C. S. & Jeon, Y. J. 2021. Liposoluble portion of the red alga Pyropia yezoensis protects alcohol induced liver injury in mice. Algae 36:219-229. https://doi.org/10.4490/algae.2021.36.4.28
  30. Little, S. M., Senhorinho, G. N. A., Saleh, M., Basiliko, N. & Scott, J. A. 2021. Antibacterial compounds in green microalgae from extreme environments: a review. Algae 36:61-72. https://doi.org/10.4490/algae.2021.36.3.6
  31. Liu, D. X., Liang, J. Q. & Fung, T. S. 2021. Human coronavirus229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Bamford, D. H. & Zuckerman, M. (Eds.) Encyclopedia of Virology. Elsevier, Amsterdam, pp. 428-440.
  32. Lu, W.-Y., Li, H.-J., Li, Q.-Y. & Wu, Y.-C. 2021. Application of marine natural products in drug research. Bioorg. Med. Chem. 35:116058.
  33. Martin, L. J. 2015. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar. Drugs 13:4784-4798. https://doi.org/10.3390/md13084784
  34. Maeda, H. 2015. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. J. Oleo Sci. 64:125-132. https://doi.org/10.5650/jos.ess14226
  35. Meganck, R. M. & Baric, R. S. 2021. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat. Med. 27:401-410. https://doi.org/10.1038/s41591-021-01282-0
  36. Menaa, F., Wijesinghe, U., Thiripuranathar, G., Althobaiti, N. A., Albalawi, A. E., Khan, B. A. & Menaa, B. 2021. Marine algae-derived bioactive compounds: a new wave of nanodrugs? Mar. Drugs 19:484.
  37. Mihindukulasooriya, S. P., Kim, H. J., Cho, J., Herath, K. H. I. N. M., Yang, J., Dinh, D. T. T., Ko, M. O., Jeon, Y. J., Ahn, G. & Jee, Y. 2022. Polyphenol-rich Sargassum horneri alleviates atopic dermatitis-like skin lesions in NC/Nga mice by suppressing Th2-mediated cytokine IL-13. Algae 37:331-347. https://doi.org/10.4490/algae.2022.37.11.24
  38. Muradian, K., Vaiserman, A., Min, K.-J. & Fraifeld, V. E. 2015. Fucoxanthin and lipid metabolism: a minireview. Nutr. Metab. Cardiovasc. Dis. 25:891-897. https://doi.org/10.1016/j.numecd.2015.05.010
  39. Nassar, H., Sippl, W., Dahab, R. A. & Taha, M. 2023. Molecular docking, molecular dynamics simulations and in vitro screening reveal cefixime and ceftriaxone as GSK3β covalent inhibitors. RSC Adv. 13:11278-11290. https://doi.org/10.1039/D3RA01145C
  40. Panda, P. K., Arul, M. N., Patel, P., Verma, S. K., Luo, W., Rubahn, H.-G., Mishra, Y. K., Suar, M. & Ahuja, R. 2020. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv. 6:eabb8097.
  41. Pandey, A., Nikam, A. N., Shreya, A. B., Mutalik, S. P., Gopalan, D., Kulkarni, S., Padya, B. S., Fernandes, G., Mutalik, S. & Prassl, R. 2020. Potential therapeutic targets for combating SARS-CoV-2: drug repurposing, clinical trials and recent advancements. Life Sci. 256:117883.
  42. Peng, J., Yuan, J.-P., Wu, C.-F. & Wang, J.-H. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar. Drugs 9:1806-1828. https://doi.org/10.3390/md9101806
  43. Pereira, S. H., Almeida, L. T., Ferraz, A. C., Ladeira, M. S., Ladeira, L. O., Magalhaes, C. L. B. & Silva, B. M. 2021. Antioxidant and antiviral activity of fullerol against Zika virus. Acta Trop. 224:106135.
  44. Pisoschi, A. M., Iordache, F., Stanca, L., Gajaila, I., Ghimpeteanu, O. M., Geicu, O. I., Bilteanu, L. & Serban, A. I. 2022. Antioxidant, anti-inflammatory, and immunomodulatory roles of nonvitamin antioxidants in anti-SARSCoV-2 therapy. J. Med. Chem. 65:12562-12593. https://doi.org/10.1021/acs.jmedchem.2c01134
  45. Pradhan, B. & Ki, J.-S. 2023. Antioxidant and chemotherapeutic efficacies of seaweed-derived phlorotannins in cancer treatment: a review regarding novel anticancer drugs. Phytother. Res. 37:2067-2091. https://doi.org/10.1002/ptr.7809
  46. Raji, V., Loganathan, C., Sadhasivam, G., Kandasamy, S., Poomani, K. & Thayumanavan, P. 2020. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: an in vitro and in silico studies. Int. J. Biol. Macromol. 148:696-703. https://doi.org/10.1016/j.ijbiomac.2020.01.140
  47. Rehman, M. F. U., Akhter, S., Batool, A. I., Selamoglu, Z., Sevindik, M., Eman, R., Mustaqeem, M., Akram, M. S., Kanwal, F., Lu, C. & Aslam, M. 2021. Effectiveness of natural antioxidants against SARS-CoV-2? Insights from the in-silico world. Antibiotics 10:1011.
  48. Saleem, A., Farooq, U., Bukhari, S. M., Khan, S., Zaidi, A., Wani, T. A., Shaikh, A. J., Sarwar, R., Mahmud, S., Israr, M., Khan, F. A. & Shahzad, S. A. 2022. Isoxazole derivatives against carbonic anhydrase: synthesis, molecular docking, MD simulations, and free energy calculations coupled with in vitro studies. ACS Omega 7:30359-30368. https://doi.org/10.1021/acsomega.2c03600
  49. Satomi, Y. 2017. Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid. Anticancer Res. 37:1557-1562. https://doi.org/10.21873/anticanres.11484
  50. Tan, Q., He, L., Meng, X., Wang, W., Pan, H., Yin, W., Zhu, T., Huang, X. & Shan, H. 2021. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J. Nanobiotechnol. 19:173.
  51. Thakuri, L. S., Park, C. M., Park, J. W., Kim, H. A. & Rhyu, D. Y. 2023. Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation. Algae 38:81-92. https://doi.org/10.4490/algae.2023.38.12.26
  52. Torres, P. H. M., Sodero, A. C. R., Jofily, P. & Silva, F. P. Jr. 2019. Key topics in molecular docking for drug design. Int. J. Mol. Sci. 20:4574.
  53. Totura, A. L. & Bavari, S. 2019. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin. Drug Discov. 14:397-412. https://doi.org/10.1080/17460441.2019.1581171
  54. Ullrich, S. & Nitsche, C. 2020. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett. 30:127377.
  55. V'kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. 2021. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19:155-170. https://doi.org/10.1038/s41579-020-00468-6
  56. Vollbracht, C. & Kraft, K. 2022. Oxidative stress and hyperinflammation as major drivers of severe COVID-19 and long COVID: implications for the benefit of high-dose intravenous vitamin C. Front. Pharmacol. 13:899198.
  57. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J. & Qi, J. 2020. Structural and functional basis of SARSCoV-2 entry by using human ACE2. Cell 181:894-904. https://doi.org/10.1016/j.cell.2020.03.045
  58. Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. -C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., Zhang, Y. & Xu, H. E. 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368:1499-1504. https://doi.org/10.1126/science.abc1560
  59. Zeremski, M., Petrovic, L. M. & Talal, A. H. 2007. The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J. Viral Hepat. 14:675-687. https://doi.org/10.1111/j.1365-2893.2006.00838.x