DOI QR코드

DOI QR Code

Morphology and phylogenetic relationships of two Antarctic strains within the genera Carolibrandtia and Chlorella (Chlorellaceae, Trebouxiophyceae)

  • Hyunsik Chae (Division of Life Sciences, Korea Polar Research Institute) ;
  • Eun Jae Kim (Division of Life Sciences, Korea Polar Research Institute) ;
  • Han Soon Kim (School of Life Sciences, Kyungpook National University) ;
  • Han-Gu Choi (Division of Life Sciences, Korea Polar Research Institute) ;
  • Sanghee Kim (Division of Life Sciences, Korea Polar Research Institute) ;
  • Ji Hee Kim (Division of Life Sciences, Korea Polar Research Institute)
  • 투고 : 2023.06.12
  • 심사 : 2023.11.30
  • 발행 : 2023.12.21

초록

The genera Carolibrandtia and Chlorella have been described as small green algae with spherical cell shapes that inhabit various environments. Species of these genera are often difficult to identify because of their simple morphology and high phenotypic plasticity. We investigated two small coccoid strains from Antarctica based on morphology, molecular phylogeny by two alignment methods which have been applied to previous phylogenetic studies of the genus Chlorella, and comparison of the secondary structures of nuclear small subunit (SSU) and internal transcribed spacer (ITS) rDNA sequences. Light microscopy of two strains revealed spherical cells containing chloroplasts with pyrenoids, and the morphological characteristics of the strains were nearly identical to those of other Chlorella species. However, based on the phylogenetic analyses of nuclear SSU and ITS rDNA sequences, it was determined that the Antarctic microalgal strains belonged to two genera, as the Chlorella and Carolibrandtia. In addition, the secondary structures of the SSU and ITS2 sequences were analyzed to detect compensatory base changes (CBCs) that were used to identify and describe the two strains. A unique CBC in the SSU rDNA gene was decisive for distinguishing strain CCAP 211/45. The ITS2 rDNA sequences for each strain were compared to those obtained previously from other closely related species. Following the comparison of morphological and molecular characteristics, we propose KSF0092 as a new species, Chlorella terrestris sp. nov., and the reassignment of the strain Chlorella antarctica CCAP 211/45 into Carolibrandtia antarctica comb. nov.

키워드

과제정보

This work was supported by the Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI PE23130 and PE23140).

참고문헌

  1. Beijerinck, M. W. 1890. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung, 48:725-785. 
  2. Bock, C., Krienitz, L. & Proschold, T. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11:293-312.  https://doi.org/10.5507/fot.2011.028
  3. Byun, Y. & Han, K. 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25:1435-1437.  https://doi.org/10.1093/bioinformatics/btp252
  4. Chae, H., Lim, S., Kim, H. S., Choi, H.-G. & Kim, J. H. 2019. Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae 34:267-275.  https://doi.org/10.4490/algae.2019.34.10.15
  5. Darienko, T., Rad-Menendez, L., Campbell, C. & Proschold, T. 2019. Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Syst. Biodivers. 17:811-829.  https://doi.org/10.1080/14772000.2019.1690597
  6. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. 
  7. Flechtner, V. R., Johansen, J. R. & Clark, W. H. 1998. Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist 58:295-311. 
  8. Fritsch, F. E. 1912. Freshwater algae. In Bell, F. J. (Ed.) National Antarctic Expedition 1901-1904. British Museum, London, pp. 1-66. 
  9. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307-321.  https://doi.org/10.1093/sysbio/syq010
  10. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98. 
  11. Heeg, J. S. & Wolf, M. 2015. ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). Plant Gene 4:20-28.  https://doi.org/10.1016/j.plgene.2015.08.001
  12. Hodac, L., Hallman, C., Spitzer, K., Elster, J., Fasshauer, F., Brinkmann, N., Lepka, D., Diwan, V. & Friedl, T. 2016. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol. Ecol. 92:fiw122. 
  13. Hoshina, R. & Fujiwara, Y. 2013. Molecular characterization of Chlorella cultures of the National Institute for Environmental Studies culture collection with description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov., and Didymogenes soliella sp. nov. (Chlorellaceae, Trebouxiophyceae). Phycol. Res. 61:124-132.  https://doi.org/10.1111/pre.12010
  14. Hoshina, R., Kobayashi, M., Suzaki, T. & Kusuoka, Y. 2018. Brandtia ciliaticola gen. et sp. nov. (Chlorellaceae, Trebouxiophyceae) a common symbiotic green coccoid of various ciliate species. Phycol. Res. 66:76-81.  https://doi.org/10.1111/pre.12194
  15. Hoshina, R. & Nakada, T. 2018. Carolibrandtia nom. nov. as a replacement name for Brandtia Hoshina (Chlorellaceae, Trebouxiophyceae). Phycol. Res. 66:82-83. https://doi.org/10.1111/pre.12208
  16. Hu, H., Li, H. & Xu, X. 2008. Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47:28-34.  https://doi.org/10.2216/07-28.1
  17. Huss, V. A. R., Frank, C., Hartmann, E. C., Hirmer, M., Kloboucek, A., Seidel, B. M., Wenzeler, P. & Kessler, E. 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35:587-598.  https://doi.org/10.1046/j.1529-8817.1999.3530587.x
  18. Kessler, E. & Huss, V. A. R. 1992. Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. J. Phycol. 28:550-553.  https://doi.org/10.1111/j.0022-3646.1992.00550.x
  19. Kim, E. J., Chae, H., Koo, M. H., Yu, J., Kim, H., Cho, S. M., Hong, K. W., Lee, J. Y., Youn, U. J., Kim, S., Choi, H.-G. & Han, S. J. 2022. Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga Micractinium variabile KSF0031. Algae 37:175-183.  https://doi.org/10.4490/algae.2022.37.4.1
  20. Komarek, J. & Fott, B. 1983. Chlorophyceae (Grunalgen) Ordnung: Chlorococcales. In Huber-Pestalozzi, G. (Ed.) Das Phytoplankton des Susswassers 7. Teil, 1. Halfte. E. Schweizerbart'sche Verlagsbuchhandlung (Nagele & Obermiller), Stuttgart, pp. 1-1044. 
  21. Krienitz, L. & Bock, C. 2012. Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698:295-326.  https://doi.org/10.1007/s10750-012-1079-z
  22. Krienitz, L., Hegewald, E. H., Hepperle, D., Huss, V. A. R., Rohr, T. & Wolf, M. 2004. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529-542.  https://doi.org/10.2216/i0031-8884-43-5-529.1
  23. Krivina, E., Sinetova, M., Savchenko, T., Degtyaryov, E., Tebina, E. & Temraleeva, A. 2023a. Micractinium lacustre and M. thermotolerans spp. nov. (Trebouxiophyceae, Chlorophyta): taxonomy, temperature-dependent growth, photosynthetic characteristics and fatty acid composition. Algal Res. 71:103042. 
  24. Krivina, E., Temraleeva, A. & Sinetova, M. 2022a. New species Micractinium kostikovii (Chlorellaceae, Trebouxiophyceae) from Russia. Phycol. Res. 70:22-34.  https://doi.org/10.1111/pre.12469
  25. Krivina, E. S., Bobrovnikova, L. A., Temraleeva, A. D., Markelova, A. G., Gabrielyan, D. A. & Sinetova, M. A. 2023b. Description of Neochlorella semenenkoi gen. et. sp. nov. (Chlorophyta, Trebouxiophyceae), a novel Chlorellalike alga with high biotechnological potential. Diversity 15:513. 
  26. Krivina, E. S., Boldina, O. N., Bukin, Y. S., Bykova, S. V. & Temraleeva, A. D. 2022b. Species delimitation polyphasic approach reveals Meyerella similis sp. nov.: a new species of "small green balls" within the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Org. Divers. Evol. 23: 25-40. 
  27. Krivina, E. S., Savchenko, T. V., Tebina, E. M., Shatilovich, A. V. & Temraleeva, A. D. 2023c. Morphology, phylogeny and fatty acid profiles of Meyerella similis from freshwater ponds and Meyerella krienitzii sp. nov. from soil (Trebouxiophyceae, Chlorophyta). J. Appl. Phycol. 35: 2295-2307.  https://doi.org/10.1007/s10811-023-03038-4
  28. Krivina, E. S. & Temraleeva, A. D. 2020. Identification problems and cryptic diversity of Chlorella-clade microalgae (Chlorophyta). Microbiology 89:720-732.  https://doi.org/10.1134/S0026261720060107
  29. Luo, W., Pflugmacher, S., Proschold, T., Walz, N. & Krienitz, L. 2006. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157:315-333.  https://doi.org/10.1016/j.protis.2006.05.006
  30. Luo, W., Proschold, T., Bock, C. & Krienitz, L. 2010. Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biol. 12:545-553.  https://doi.org/10.1111/j.1438-8677.2009.00221.x
  31. Mai, J. C. & Coleman, A. W. 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44:258-271.  https://doi.org/10.1007/PL00006143
  32. Martins, T. P., Ramos, V., Hentschke, G. S., Castelo-Branco, R., Rego, A., Monteiro, M., Brito, A., Tamagnini, P., Cary, S. C., Vasconcelos, V., Krienitz, L., Magalhaes, C. & Leao, P. N. 2020. The extremophile Endolithella mcmurdoensis gen. et sp. nov. (Trebouxiophyceae, Chlorellaceae), a new Chlorella-like endolithic alga from Antarctica. J. Phycol. 56:208-216.  https://doi.org/10.1111/jpy.12940
  33. Proschold, T., Bock, C., Luo, W. & Krienitz, L. 2010. Polyphyletic distribution of bristle formation in Chlorellaceae: Micractinium, Diacanthos, Didymogenes and Hegewaldia gen. nov. (Trebouxiophyceae, Chlorophyta). Phycol. Res. 58:1-8.  https://doi.org/10.1111/j.1440-1835.2009.00552.x
  34. Proschold, T. & Darienko, T. 2020. Choricystis and Lewiniosphaera gen. nov. (Trebouxiophyceae Chlorophyta), two different green algal endosymbionts in freshwater sponges. Symbiosis 82:175-188.  https://doi.org/10.1007/s13199-020-00711-x
  35. Proschold, T., Darienko, T., Silva, P. C., Reisser, W. & Krienitz, L. 2011. The systematics of Zoochlorella revisited employing an integrative approach. Environ. Microbiol. 13:350-364.  https://doi.org/10.1111/j.1462-2920.2010.02333.x
  36. Proschold, T., Pitsch, G. & Darienko, T. 2020. Micractinium tetrahymenae (Trebouxiophyceae, Chlorophyta), a new endosymbiont isolated from ciliates. Diversity 12:200. 
  37. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542.  https://doi.org/10.1093/sysbio/sys029
  38. Shihira, J. & Krauss, R. W. 1965. Chlorella: physiology and taxonomy of forty-one isolates. University of Maryland, College Park, MD, 92 pp. 
  39. Sommer, V., Mikhailyuk, T., Glaser, K. & Karsten, U. 2020. Uncovering unique green algae and cyanobacteria iso-lated from biocrusts in highly saline potash tailing pile habitats, using an integrative approach. Microorganisms 8:1667. 
  40. Tsarenko, P. M. & John, D. M. 2011. Phylum Chlorophyta. Order Chlorellales. In John, D. M., Whitton, B. A. & Brook, A. J. (Eds.) The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. 2nd ed. Cambridge University Press, Cambridge, pp. 475-499. 
  41. White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, pp. 315-322. 
  42. Wille, N. 1924. Susswasseralgen von der Deutschen Sudpolar-Expedition auf dem Schiff "Gauss". In Drygalski, E. V. E. (Ed.) Deutsche Sudpolar-Expedition 1901-1903. G. Reimer, Berlin, pp. 373-444. 
  43. Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 32:3406-3415.  https://doi.org/10.1093/nar/gkg595