DOI QR코드

DOI QR Code

RINGS IN WHICH EVERY SEMICENTRAL IDEMPOTENT IS CENTRAL

  • Muhammad Saad (Department of Mathematics and Computer Science, Faculty of Science, Alexandria University)
  • Received : 2023.09.14
  • Accepted : 2023.10.26
  • Published : 2023.12.30

Abstract

The RIP of rings was introduced by Kwak and Lee as a generalization of the one-sided idempotent-reflexivity property. In this study, we focus on rings in which all one-sided semicentral idempotents are central, and we refer to them as quasi-Abelian rings, extending the concept introduced by RIP. We establish that quasi-Abelianity extends to various types of rings, including polynomial rings, power series rings, Laurent series rings, matrices, and certain subrings of triangular matrix rings. Furthermore, we provide comprehensive proofs for several results that hold for RIP and are also satisfied by the quasi-Abelian property. Additionally, we investigate the structural properties of minimal non-Abelian quasi-Abelian rings.

Keywords

References

  1. A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, and Y. Lee, Reflexivity with maximal ideal axes, Comm. Algebra 45 (10) (2017), 4348-4361. https://doi.org/10.1080/00927872.2016.1222398
  2. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), 567-580. https://doi.org/10.1080/00927878308822865
  3. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, In Proc. Biennial Ohio State-Denison Conference, pages 102-129. World Scientific, 1992.
  4. G. F. Birkenmeier and B. J. Heider, Annihilators and extensions of idempotent-generated ideals, Comm. Algebra 47 (3) (2019), 1348 - 1375. https://doi.org/10.1080/00927872.2018.1506462
  5. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, On polynomial extensions of principally quasiBaer rings, Kyungpook Math. J. 40 (2000), 247-253.
  6. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), 639-660. https://doi.org/10.1081/AGB-100001530
  7. W. Chen, On semiabelian π-regular rings, Int. J. Math. Math. Sci 2007 (2007).
  8. K. Eldridge, Orders for finite noncommutative rings with unity, The American Mathematical Monthly 75 (5) (1968), 512-514. https://doi.org/10.2307/2314716
  9. K. R. Goodearl and R. B. Warfield Jr, An introduction to noncommutative Noetherian rings, Cambridge University Press (2004).
  10. H. Heatherly and R. P. Tucci, Central and semicentral idempotents, Kyungpook Math. J 40 (2) (2000), 255-258.
  11. Z. Jule and D. Xianneng, Hereditary rings containing an injective maximal left ideal, Comm. Algebra 21 (12) (1993), 4473-4479. https://doi.org/10.1080/00927879308824811
  12. J. Y. Kim, Certain rings whose simple singular modules are GP-injective, Proc. Japan Acad. Ser. A Math. Sci. 81 (7) (2005), 125-128. https://doi.org/10.3792/pjaa.81.125
  13. J. Y. Kim, On reflexive principally quasi-Baer rings, Korean J. Math. 17 (3) (2009), 233-236.
  14. J. Y. Kim and J. U. Baik, On idempotent reflexive rings, Kyungpook Math. J. 46 (2006), 597-601.
  15. T. K. Kwak and Y. Lee, Reflexive property of rings, Comm. Algebra 40 (4) (2012), 1576-1594. https://doi.org/10.1080/00927872.2011.554474
  16. T. K. Kwak and Y. Lee, Reflexive property on idempotents, Bull. Korean Math. Soc. 50 (6) (2013), 1957-1972. https://doi.org/10.4134/BKMS.2013.50.6.1957
  17. T. K. Kwak and Y. Lee, Corrigendum to "reflexive property on idempotents" bull. korean math. soc. 50 (2013), no. 6, 1957-1972], Bull. Korean Math. Soc. 53 (6) (2016), 1913-1915. https://doi.org/10.4134/BKMS.b160513
  18. J. Lambek, Lectures on rings and modules, volume 283, American Mathematical Soccity (2009).
  19. G. Marks, On 2-primal ore extensions, Comm. Algebra 29 (5) (2001), 2013-2023. https://doi.org/10.1081/AGB-100002173
  20. B. Osofsky, Rings all of whose finitely generated modules are injective, J. Math. 14 (1964), 645-650.
  21. V. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Am. Math. Soc. 48 (1) (1975), 21-25. https://doi.org/10.2307/2040685
  22. J. Shepherdson, Inverses and zero divisors in matrix rings, Proc. London Math. Soc. 3 (1) (1951), 71-85. https://doi.org/10.1112/plms/s3-1.1.71
  23. B. Stenstrom, Rings of quotients, Springer-Verlag, Berlin Heidelberg New York (1975).