DOI QR코드

DOI QR Code

Mechanical Properties of (Ti0.875M0.125)N (M=Cr, Hf, Mn, and Zr) Solid Solutions: Investigation of Coating Materials for Fiber-reinforced Ceramic Matrix Composites via ab Initio Calculations

(Ti0.875M0.125)N (M=Cr, Hf, Mn, 및 Zr) 고용체의 기계적 특성: 제1원리 계산을 이용한 섬유강화 세라믹용 코팅 소재 연구

  • Hyokyeong Kim (Department of Materials Science and Engineering, Soongsil University) ;
  • Haeun Lee (Department of Materials Science and Engineering, Soongsil University) ;
  • Jongwook Kwak (Department of Materials Science and Engineering, Soongsil University) ;
  • Jiwoong Kim (Department of Green Chemistry and Materials Engineering, Soongsil University)
  • 김효경 (숭실대학교 신소재공학과) ;
  • 이하은 (숭실대학교 신소재공학과) ;
  • 곽종욱 (숭실대학교 신소재공학과) ;
  • 김지웅 (숭실대학교 친환경화학소재융합학과)
  • Received : 2023.11.02
  • Accepted : 2023.12.07
  • Published : 2023.12.31

Abstract

Nitride coatings improve the material properties of fiber in fiber-reinforced ceramic matrix composites, and in this study, we investigated the mechanical properties of (Ti0.875M0.125)N using ab initio calculation. We focused on the substitutional effect of a small amount of transition metal M (M=Cr, Hf, Mn, and Zr) in the titanium site. For the reliability of the data, it was set based on the model size and mechanical properties of known undoped ceramics. The shear and Young's modulus were the best in (Ti0.875Hf0.125)N solid solutions. CrN was the best among the whole compositions in bulk modulus, and (Ti0.875Mn0.125)N was the best among solid solutions in bulk modulus. The results of this study will provide useful information on how to develop nitrides as coating materials for fiber-reinforced ceramic matrix composites.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2022년 산업혁신인재성장지원사업).

References

  1. W. Wang, L. Zhang, X. Dong, J. Wu, Q. Zhou, S. Li, C. Shen, W. Liu, G. Wang, and R. He, "Additive Manufacturing of Fiber Reinforced Ceramic Matrix Composites: Advances, Challenges, and Prospects", Ceram. Int., 2022, 48, 19542-19556. https://doi.org/10.1016/j.ceramint.2022.04.146
  2. M. S. Kim, J. D. Lee, H. S. Son, and B. O. Lee, "Evaluation of Stitching Properties of Thermoplastic and Thermosetting Carbon Fiber-Reinforced Composite", Text. Sci. Eng., 2021, 58, 298-304.
  3. X. Zhang, X. Wang, W. Jiao, Y. Liu, J. Yu, and B. Ding, "Evolution from Microfibers to Nanofibers Toward Nextgeneration Ceramic Matrix Composites: A Review", J. Eur. Ceram. Soc., 2022, 43, 1255-1269. https://doi.org/10.1016/j.jeurceramsoc.2022.11.033
  4. K. Sato, H. Morozumi, O. Funayama, H. Kaya, and T. Isoda, "Developing Interfacial Carbon-Boron-Silicon Coatings for Silicon Nitride-Fiber-Reinforced Composites for Improved Oxidation Resistance", J. Am. Ceram. Soc., 2002, 85, 1815-1822. https://doi.org/10.1111/j.1151-2916.2002.tb00358.x
  5. E. Y. Sun, S. R. Nutt, and J. J. Brennan, "High-temperature Tensile Behavior of a Boron Nitride-coated Silicon Carbide-fiber Glass-ceramic Composite", J. Am. Ceram. Soc., 1996, 79, 1521-1529. https://doi.org/10.1111/j.1151-2916.1996.tb08760.x
  6. J. J. Brennan, "Interfaces in BN Coated Fiber Reinforced Glass-ceramic Matrix Composites", Scripta Metallurgica et Materialia, 1994, 31, 959-964. https://doi.org/10.1016/0956-716X(94)90510-X
  7. N. I. Baklanova, T. M. Zima, A. I. Boronin, S. V. Kosheev, A. T. Titov, N. V. Isaeva, D. V. Graschenkov, and S. S. Solntsev, "Protective Ceramic Multilayer Coatings for Carbon Fibers", Surf. Coat. Technol., 2006, 201, 2313-2319. https://doi.org/10.1016/j.surfcoat.2006.03.046
  8. X. Yao, X. Gao, J. Jiang, C. Xu, C. Deng, and J. Wang, "Comparison of Carbon Nanotubes and Graphene Oxide Coated Carbon Fiber for Improving the Interfacial Properties of Carbon Fiber/epoxy Composites", Compos. B. Eng., 2018, 132, 170-177. https://doi.org/10.1016/j.compositesb.2017.09.012
  9. H. Hatta, T. Aoki, Y. Kogo, and T. Yarii, "High-temperature Oxidation Behavior of SiC-coated Carbon Fiber-reinforced Carbon Matrix Composites", Compos. Part A Appl. Sci. Manuf., 1999, 30, 515-520. https://doi.org/10.1016/S1359-835X(98)00143-2
  10. S. J. Frueh, T. P. Coons, J. W. Reutenauer, R. Gottlieb, M. A. Kmetz, and S. L. Suib, "Carbon Fiber Reinforced Ceramic Matrix Composites with an Oxidation Resistant Boron Nitride Interface Coating", Ceram. Int., 2018, 44, 15310-15316. https://doi.org/10.1016/j.ceramint.2018.05.177
  11. K. Sato, H. Morozumi, O. Funayama, H. Kaya, and T. Isoda, "Developing Interfacial Carbon-Boron-Silicon Coatings for Silicon Nitride-Fiber-Reinforced Composites for Improved Oxidation Resistance", J. Am. Ceram. Soc. 2002, 85, 1815-1822. https://doi.org/10.1111/j.1151-2916.2002.tb00358.x
  12. G. S. Gautam and K. H. Kumar, "Elastic, Thermochemical and Thermophysical Properties of Rock Salt-type Transition Metal Carbides and Nitrides: A First Principles Study", J. Alloys Compd., 2014, 587, 380-386. https://doi.org/10.1016/j.jallcom.2013.10.156
  13. Z. Rao, T. Su, T. Koenig, G. B. Thompson, D. Depla, and E. Chason, "Effect of Processing Conditions on Residual Stress in Sputtered Transition Metal Nitrides (TiN, ZrN and TaN): Experiments and Modeling", Surf. Coat. Technol., 2022, 447, 128880.
  14. M. Kim, M. Seo, C. Kim, and J. Kim, "Mechanical and Directional Tensile Properties of Ti2AlC and Ti2AlN Using First-principles Calculations", Text. Sci. Eng., 2020, 57, 376-384.
  15. K. Balasubramanian, S. V. Khare, and D. Gall, "Valence Electron Concentration as an Indicator for Mechanical Properties in Rocksalt Structure Nitrides, Carbides and Carbonitrides", Acta Mater., 2018, 152, 175-185. https://doi.org/10.1016/j.actamat.2018.04.033
  16. G. Kresse and J. Hafner, "Ab Initio Molecular-dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium", Phys. Rev., B Condens. Matter, 1994, 49, 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
  17. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab Initio Total-energy Calculations Using a Plane-wave Basis Set", Phys. Rev., B Condens. Matter, 1996, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
  18. G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, "Perdew, Burke, and Ernzerhof Reply", Phys. Rev. Lett., 1998, 80, 891-891. https://doi.org/10.1103/PhysRevLett.80.891
  20. J. Kim, M. Kim, K. M. Roh, and I. Kang, "Bond Characteristics, Mechanical Properties, and High-temperature Thermal Conductivity of (Hf1-xTax)C Composites", J. Am. Ceram. Soc., 2019, 102, 6298-6308. https://doi.org/10.1111/jace.16466
  21. J. Kim and S. Kang, "Elastic and Thermo-physical Properties of TiC, TiN, and Their Intermediate Composition Alloys Using ab Initio Calculations", J. Alloy Compd., 2012, 528, 20-27. https://doi.org/10.1016/j.jallcom.2012.02.124
  22. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouinzone Integrations", Phys. Rev. B, 1976, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  23. M. A. Meyers and K. K. Chawla, "Mechanical Behavior of Materials", Cambridge University Press, 2008.
  24. P. Villars and K. Cenzual, "Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds", 2007.
  25. A. Pathak and A. Singh, "Transition Metal Nitrides: A First Principles Study, High Temperature Materials and Processes", 2016, 35, 389-398. https://doi.org/10.1515/htmp-2014-0169
  26. M. O. Lynn, D. Ologunagba, B. B. Dangi, and S. Kattel, "Density Functional Theory Study of Bulk Properties of Transition Metal Nitrides", Phys. Chem. Chem. Phys., 2023, 25, 5156-5163.
  27. N. Bohr, "I. On the Constitution of Atoms and Molecules", Lond. Edinb. Dublin Philos. Mag. J. Sci., 2009, 26, 1-25. https://doi.org/10.1080/14786441308634955
  28. M. J. Gillan, "Calculation of the Vacancy Formation Energy in Aluminium", J. Phys. Condens. Matter, 1989, 1, 689-711. https://doi.org/10.1088/0953-8984/1/4/005
  29. M. A. Turchanin and P. G. Agraval, "Cohesive Energy, Properties, and Formation Energy of Transition Metal Alloys", Powder Metall. Met. Ceram., 2008, 47, 26-39. https://doi.org/10.1007/s11106-008-0006-3
  30. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, and D. Skinner, and G. Ceder, "Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation", APL Mater., 2013, 1, 011002.
  31. M. Mekata, J. Haruna, and H. Takaki, "Neutron Diffraction Study of Antiferromagnetic Mn2N", J. Phys. Soc. Japan, 1968, 25, 234-238. https://doi.org/10.1143/JPSJ.25.234
  32. X. Wu, Y. Jiang, T. Wu, B. Zuo, S. Bian, K. Lu, L. Zhao, L. Yu, and J. Xu, "Insight into the Mechanisms of Nitride Films with Excellent Hardness and Lubricating Performance: A Review", Nanomaterials, 2023, 13, 2205.
  33. W. Meng and G. Eesley, "Growth and Mechanical Anisotropy of TiN Thin Films", Thin Solid Films, 1995, 271, 108-116. https://doi.org/10.1016/0040-6090(95)06875-9
  34. F. Mouhat and F. X. Coudert, "Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems", Phys. Rev. B, 2014, 90, 224104.
  35. S. -H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, "Electronic Mechanism of Hardness Enhancement in Transition-metal Carbonitrides", Nature, 1999, 399, 132-134. https://doi.org/10.1038/20148
  36. M. Fine, L. Brown, and H. Marcus, "Elastic Constants Versus Melting Temperature in Metals", Scr. Mater., 1984, 18, 951-956. https://doi.org/10.1016/0036-9748(84)90267-9
  37. S. L. Wang and Y. Pan, "Insight into the Structures, Melting Points, and Mechanical Properties of NbSi2 from First-principles Calculations", J. Am. Ceram. Soc., 2019, 102, 4822-4834. https://doi.org/10.1111/jace.16345
  38. S. Zhang, S. Liu, D. Yan, Q. Yu, H. Ren, B. Yu, and D. Li, "Structural Stability, Hardness, Fracture Toughness and Melting Points of Ta1-xHfxC and Ta1-xZrxC Ceramics from First-principles", 2020.
  39. Q. -J. Hong and A. Van De Walle, "Prediction of the Material with Highest Known Melting Point from ab Initio Molecular Dynamics Calculations", Phys. Rev. B, 2015, 92, 020104.
  40. S. V. Ushakov, A. Navrotsky, Q.-J. Hong, and A. van de Walle, "Carbides and Nitrides of Zirconium and Hafnium", Materials, 2019, 12, 2728.
  41. J. Justin and A. Jankowiak, "Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability", Aerospace Lab, 2011, 3, 1-11.