DOI QR코드

DOI QR Code

Direct Growth of Laser-Induced Graphene Electrodes on Polyimides with Different Internal Linkages

내부 연결 그룹이 다른 폴리이미드 상 레이저 유도 그래핀 전극 직접 성장

  • Jeong Min Sohn (Department of Textile System Engineering, Kyungpook National University) ;
  • Yun Chan Hwang (Department of Textile System Engineering, Kyungpook National University) ;
  • Jae Hui Park (Department of Textile System Engineering, Kyungpook National University) ;
  • Ki-Ho Nam (Department of Textile System Engineering, Kyungpook National University)
  • 손정민 (경북대학교 섬유시스템공학과) ;
  • 황윤찬 (경북대학교 섬유시스템공학과) ;
  • 박재희 (경북대학교 섬유시스템공학과) ;
  • 남기호 (경북대학교 섬유시스템공학과)
  • Received : 2023.11.20
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

We present a facile direct-writing heteroatom-doped graphene on molecularly controlled polyimides using a continuous-wave CO2 infrared laser scriber. We first synthesized polyimide (PI) films with various internal linkages such as phenylene, trifluoromethyl, and sulfone groups by conventional two-step polycondensation of 4,4'-oxydianiline with three different tetracarboxylic dianhydrides. The development of graphene from each PI film surfaces was confirmed by characterizing the heteroatom-doped (N-doped, F-doped, and S-doped) laser-induced graphene (LIG) layers. We found that both laser processing parameters (e.g., laser power and scan speed) and chemical backbones of PIs had a large influence on the formation and quality of the LIG, investigated in terms of the ID/IG and I2D Raman bands, crystalline size, surface composition, and sheet resistance. A small amount of heteroatom-doping derived from the PI backbones might easily control the electrical conductivity of LIG electrode. It is predicted that the LIG developed according to the obtained results can offer new opportunities for the required simple, low-cost, and flexible electronics and sensors.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C1004454). 또한 이 논문은 2023년도 정부(산업통산자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2023년 산업혁신인재성장지원사업).

References

  1. A. K. Geim, "Graphene: Status and Prospects", Science, 2009, 324, 1530-1534. https://doi.org/10.1126/science.1158877
  2. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, "Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition", Nat. Mater., 2011, 10, 424-428. https://doi.org/10.1038/nmat3001
  3. X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg, and Y. Bando, "Three-Dimensional Strutted Graphene Grown by Substrate-Free Sugar Blowing for High-Power-Density Supercapacitors", Nat. Commun., 2013, 4, 2905.
  4. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, "Large-Area Graphene Single Crystals Grown by Low Pressure Chemical Vapor Deposition of Methane on Copper", J. Am. Chem. Soc., 2011, 133, 2816-2819. https://doi.org/10.1021/ja109793s
  5. J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, "Domain (Grain) Boundaries and Evidence of "Twinlike" Structures in Chemically Vapor Deposited Grown Graphene", ACS Nano, 2011, 5, 2433-2439. https://doi.org/10.1021/nn103102a
  6. J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, "Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium", Science, 2014, 344, 286-289. https://doi.org/10.1126/science.1252268
  7. W. Zhang, S. Zhu, R. Luque, S. Han, L. Hu, and G. Xu, "Recent Development of Carbon Electrode Materials and Their Bioanalytical and Environmental Applications", Chem. Soc. Rev., 2016, 45, 715-752. https://doi.org/10.1039/C5CS00297D
  8. T. Wei, F. Hauke, and A. Hirsch, "Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering", Adv. Mater., 2021, 33, 2104060.
  9. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, "Laser-Induced Porous Graphene Films from Commercial Polymers", Nat. Commun., 2014, 5, 5714.
  10. K. H. Nam, M. Abdulhafez, E. Castagnola, G. N. Tomaraei, X. T. Cui, and M. Bedewy, "Laser Direct Write of Heteroatom-Doped Graphene on Molecularly Controlled Polyimides for Electrochemical Biosensors with Nanomolar Sensitivity", Carbon, 2022, 188, 209-219. https://doi.org/10.1016/j.carbon.2021.10.010
  11. S. Khim, Y. C. Hwang, J. Choi, H. Park, and K. H. Nam, "Temperature-Invariant Large Broadband Polyimide Dielectrics with Multimodal Porous Networks", ACS Appl. Polym. Mater., 2023, 5, 4159-4169.
  12. Y. Zhang, N. Mushtaq, X. Fang, and G. Chen, "In Situ FTIR Analysis for the Determination of Imidization Degree of Polyimide Precursors", Polymer, 2022, 238, 124416.
  13. Y. C. Hwang, S. Khim, and K. H. Nam, "Thermo-Viscoelastic Residual Stress Behavior of Fluorinated Polyimide Based on Fluid Instability-Driven Shear Exfoliated Graphenic Nanosheet", Chem. Eng. J., 2023, 455, 140888.
  14. M. Abdulhafez, G. N. Tomaraei, and M. Bedewy, "Fluence-Dependent Morphological Transitions in Laser-Induced Graphene Electrodes on Polyimide Substrates for Flexible Devices", ACS Appl. Nano Mater., 2021, 4, 2973-2986. https://doi.org/10.1021/acsanm.1c00101
  15. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman Spectroscopy in Graphene", Phys. Rep., 2009, 473, 51-87. https://doi.org/10.1016/j.physrep.2009.02.003
  16. K. H. Nam, M. Abdulhafez, G. N. Tomaraei, and M. Bedewy, "Laser-Induced Fluorinated Graphene for Superhydrophobic Surfaces with Anisotropic Wetting and Switchable Adhesion", Appl. Surf. Sci., 2022, 574, 151339.