과제정보
본 연구는 한국건설기술연구원 주요사업으로 지원을 받아 수행된 연구(인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발)로 이에 감사합니다.
참고문헌
- Bae, S.H. (2023), Deep learning-based crack detection for facility safety inspection - focusing on tunnel cement concrete lining, Master Thesis, University of Seoul, pp. 35-46.
- Bae, S.H., Ham, S.W., Lee, I.P., Lee, G.P., Kim, D.G. (2022), "Deep learning based crack detection from tunnel cement concrete lining", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 6, pp. 583-598. https://doi.org/10.9711/KTAJ.2022.24.6.583
- Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 801-818.
- Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R. (2022), "Masked-attention mask transformer for universal image segmentation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 1290-1299.
- Hadinata, P.N., Simanta, D., Eddy, L., Nagai, K. (2021), "Crack detection on concrete surfaces using deep encoder-decoder convolutional neural network: a comparison study between U-Net and DeepLabV3+", Journal of the Civil Engineering Forum, Vol. 7, No. 3, pp. 323-334. https://doi.org/10.22146/jcef.65288
- Ham, S.W., Bae, S.H., Lee, I.P., Lee, G.P., Kim, D.G. (2022), "An evaluation methodology for cement concrete lining crack segmentation deep learning model", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 6, pp. 513-524. https://doi.org/10.9711/KTAJ.2022.24.6.513
- Jeon, E.I., Kim, S.H., Park, S.Y., Kwak, J.W., Choi, I.H. (2021), "Semantic segmentation of seagrass habitat from drone imagery based on deep learning: a comparative study", Ecological Informatics, Vol. 66, 101430.
- Kim, A.R., Kim, D., Byun, Y.S., Lee, S.W. (2018), "Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering", Journal of the Korean Geotechnical Society, Vol. 34, No. 12, pp. 145-154. https://doi.org/10.7843/KGS.2018.34.12.145
- Kim, B.H., Cho, S.J. (2018), "Automated vision-based detection of cracks on concrete surfaces using a deep learning technique", Sensors, Vol. 18, No. 10, pp. 3452.
- Kim, H.S., Kim, M.H. (2022), "A study on the image-based malware classification system that combines image preprocessing and ensemble techniques for high accuracy", KIPS Transactions on Computer and Communication Systems, Vol. 11, No. 7, pp. 225-232. https://doi.org/10.3745/KTCCS.2022.11.7.225
- Lee, T.H., Kim, J.H., Lee, S.J., Ryu, S.K., Joo, B.C. (2023), "Improvement of concrete crack segmentation performance using stacking ensemble learning", Applied Sciences, Vol. 13, No. 4, 2367.
- Liu, Y., Yao, J., Lu, X., Xie, R., Li, L. (2019), "DeepCrack: A deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, Vol. 338, pp. 139-153. https://doi.org/10.1016/j.neucom.2019.01.036
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B. (2021), "Swin transformer: Hierarchical vision transformer using shifted windows", Proceedings of the IEEE/CVF International Conference on Computer Vision, Montrealers, Canada, pp. 10012-10022.
- Pandey, R.K., Achara, A. (2022), CoreDeep: Improving crack detection algorithms using width stochasticity, arXiv preprint arXiv:2209.04648.
- Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu, X., Lu, T., Lu, L., Li, H., Wang, X., Qiao, Y. (2023), "Internimage: Exploring large-scale vision foundation models with deformable convolutions", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, pp. 14408-14419.
- Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J. (2018), "Unified perceptual parsing for scene understanding", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 418-434.