DOI QR코드

DOI QR Code

TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel

  • 양승훈 (고려대학교 건축사회환경공학부) ;
  • 최항석 (고려대학교 건축사회환경공학부) ;
  • 권기범 (고려대학교 건축사회환경공학부) ;
  • 황채민 (고려대학교 건축사회환경공학부) ;
  • 강민규 (고려대학교 건축사회환경공학부)
  • Seunghun Yang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hangseok Choi (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kibeom Kwon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Chaemin Hwang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Minkyu Kang (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2023.09.19
  • 심사 : 2023.10.23
  • 발행 : 2023.11.30

초록

도심지 내 지하구조물 개발의 필요성이 증가함에 따라, TBM 터널 시공 중 터널 굴진면 전방예측에 대한 연구가 꾸준하게 진행되고 있다. 본 연구에서는 TBM 터널 굴착 중 복합지반을 조우하는 상황을 모사한 유한요소(finite element) 수치해석 모델을 개발하였다. 개발된 수치해석 모델은 이론해와 실내실험으로부터 측정된 전기 비저항 결과값과의 비교를 통해 그 성능을 검증하였다. 이후 실제 터널의 형상과 지반조건, 측정전극의 배열 조건 등 전기 비저항 탐사에 대한 영향 변수를 설정하고 이에 따른 매개변수 해석을 수행하였다. 그 결과, 복합지반 내 경계면의 경사가 가파를수록, 복합지반을 구성하는 두 지반 사이의 전기 비저항 차이가 클수록, TBM 굴착 중 전기 비저항 측정값이 더 급격하게 변화함을 확인하였다. 또한, 보다 효율적이고 정확한 복합지반 예측을 위해 적절한 전극 간격 및 전극 배열 위치 선정의 중요성을 제고하였다. 결론적으로, 본 연구에서 개발된 수치해석 모델을 통한 터널 막장면 전방 복합지반 예측은 TBM 터널 시공 과제의 구조적 안정성과 경제적 효율성 증대에 이바지할 것으로 사료된다.

As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

키워드

과제정보

이 연구는 국토교통부/국토교통과학기술진흥원이 시행하고 한국도로공사가 총괄하는 "스마트건설기술개발국가 R&D사업(과제번호RS-2020-KA157074)"과 고려대학교 산학협력단에서 주관하는 "TBM 굴진향상을 위한 연속굴착 기술개발 R&D사업(과제번호 RS-2022-00144188)의 지원으로 수행하였으며 이에 깊은 감사를 드립니다.

참고문헌

  1. Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Transactions of the AIME, Vol. 146, No. 1, pp. 54-62. https://doi.org/10.2118/942054-G
  2. Bai, X.D., Cheng, W.C., Ong, D.E.L., Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomechanics and Engineering, Vol. 25, No. 1, pp. 59-73. https://doi.org/10.12989/GAE.2021.25.1.059
  3. Broere, W. (2016), "Urban underground space: solving the problems of today's cities", Tunnelling and Underground Space Technology, Vol. 55, pp. 245-248. https://doi.org/10.1016/j.tust.2015.11.012
  4. Chen, G., Wu, Z.Z., Wang, F.J., Ma, Y.L. (2011), "Study on the application of a comprehensive technique for geological prediction in tunneling", Environmental Earth Sciences, Vol. 62, No. 8, pp. 1667-1671. https://doi.org/10.1007/s12665-010-0651-y
  5. Choi, J.S. (2005), Rock mass classification and prediction ahead of tunnel using electromagnetic wave, Master Dissertation, Korea Advanced Institute of Science and Technology, pp. 22-31.
  6. Choi, S.W., Park, B., Chang, S.H., Kang, T.H., Lee, C. (2018), "Database analysis for estimating design parameters of medium to large-diameter TBM", Tunnel and Underground Space, Vol. 28, No. 6, pp. 513-527. https://doi.org/10.7474/TUS.2018.28.6.513
  7. Choo, H., Burns, S.E. (2014), "Review of Archie's equation through theoretical derivation and experimental study on uncoated and hematite coated soils", Journal of Applied Geophysics, Vol. 105, pp. 225-234. https://doi.org/10.1016/j.jappgeo.2014.03.024
  8. Chung, H., Lee, I.M., Jung, J.H., Park, J. (2019), "Bayesian networks-based shield TBM risk management system: methodology development and application", KSCE Journal of Civil Engineering, Vol. 23, No. 1, pp. 452-465. https://doi.org/10.1007/s12205-018-0912-y
  9. Delisio, A., Zhao, J., Einstein, H.H. (2013), "Analysis and prediction of TBM performance in blocky rock conditions at the Lotschberg Base Tunnel", Tunnelling and Underground Space Technology, Vol. 33, pp. 131-142. https://doi.org/10.1016/j.tust.2012.06.015
  10. Dickmann, T., Sander, B.K. (1996), "Drivage-concurrent tunnel seismic prediction (TSP)", Felsbau, Vol. 14, No. 6, pp. 406-411.
  11. Fukue, M., Minato, T., Horibe, H., Taya, N. (1999), "The micro-structures of clay given by resistivity measurements", Engineering Geology, Vol. 54, No. 1-2, pp. 43-53. https://doi.org/10.1016/S0013-7952(99)00060-5
  12. Grodner, M. (2001), "Delineation of rockburst fractures with ground penetrating radar in the Witwatersrand Basin, South Africa", International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 6, pp. 885-891. https://doi.org/10.1016/S1365-1609(01)00054-5
  13. Jeong, H., Zhang, N., Jeon, S. (2018), "Review of technical issues for shield TBM tunneling in difficult grounds", Tunnel and Underground Space, Vol. 28, No. 1, pp. 1-24. https://doi.org/10.7474/TUS.2018.28.1.001
  14. Joo, G.W., Oh, T.M., Cho, G.C., Ryu, H.H., Song, K.I. (2014), "Estimation of rock mass rating (RMR) for TBM using electrical resistivity", Proceedings of the World Tunnel Congress 2014 - Tunnels for a better Life, Foz do Iguacu, pp. 1-7.
  15. Kang, D., Lee, I.M., Jung, J.H., Kim, D. (2019), "Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 3, pp. 323-345.
  16. Kaus, A., Boening, W. (2008), "BEAM - Geoelectrical ahead monitoring for TBM-drives", Geomechanics and Tunnelling, Vol. 1, No. 5, pp. 442-449. https://doi.org/10.1002/geot.200800048
  17. Kim, D.K., Pham, K., Park, S.Y., Oh, J.Y., Choi, H. (2020), "Determination of effective parameters on surface settlement during shield TBM",Geomechanics and Engineering, Vol. 21, No. 2, pp. 153-164. https://doi.org/10.12989/GAE.2020.21.2.153
  18. Kim, T.H., Kwon, Y.S., Chung, H., Lee, I.M. (2018), "A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1049-1060. 
  19. Kwon, K., Kang, M., Kim, D., Choi, H. (2023), "Prioritization of hazardous zones using an advanced risk management model combining the analytic hierarchy process and fuzzy set theory", Sustainability, Vol. 15, No. 15, 12018.
  20. Lee, K.H., Park, J.H., Park, J., Lee, I.M., Lee, S.W. (2020), "Experimental verification for prediction method of anomaly ahead of tunnel face by using electrical resistivity tomography", Geomechanics and Engineering, Vol. 20, No. 6, pp. 475-484.
  21. Li, S., Li, S., Zhang, Q., Xue, Y., Liu, B., Su, M., Wang, Z., Wang, S. (2010), "Predicting geological hazards during tunnel construction", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 2, No. 3, pp. 232-242. https://doi.org/10.3724/SP.J.1235.2010.00232
  22. Maidl, B., Herrenknecht, M., Maidl, U., Wehrmeyer, G. (2013), Mechanised Shield Tunnelling, Wilhelm Ernst & Sohn, Berlin, pp. 191-214.
  23. McCarter, W.J. (1984), "The electrical resistivity characteristics of compacted clays", Geotechnique, Vol. 34, No. 2, pp. 263-267. https://doi.org/10.1680/geot.1984.34.2.263
  24. McDowell, P.W., Barker, R.D., Butcher, A.P., Culshaw, M.G., Jackson, P.D., McCann, D.M., Skipp, B.O., Matthews, S.L., Arthur, J.C.R. (2002), Geophysics in Engineering Investigations, CIRIA, London, pp. 96-102.
  25. Michot, D., Dorigny, A., Benderitter, Y. (2001), "Determination of water flow direction and corn rootsinduced drying in an irrigated Beauce CALCISOL, using electrical resistivity measurements", Comptes Rendus de l'Academie des Sciences - Series IIA - Earth and Planetary Science, Vol. 332, No. 1, pp. 29-36.
  26. Mifkovic, M., Swidinsky, A., Mooney, M. (2021), "Imaging ahead of a tunnel boring machine with DC resistivity: a laboratory and numerical study", Tunnelling and Underground Space Technology, Vol. 108, 103703.
  27. Nam, K.M., Kim, J.J., Kwak, D.Y., Rehman, H., Yoo, H.K. (2020), "Structure damage estimation due to tunnel excavation based on indoor model test", Geomechanics and Engineering, Vol. 21, No. 2, pp. 95-102. https://doi.org/10.12989/GAE.2020.21.2.095
  28. Park, J., Lee, K.H., Kim, B.K., Choi, H., Lee, I.M. (2017), "Predicting anomalous zone ahead of tunnel face utilizing electrical resistivity: II. Field tests", Tunnelling and Underground Space Technology, Vol. 68, pp. 1-10. https://doi.org/10.1016/j.tust.2017.05.017
  29. Park, J., Ryu, J., Choi, H., Lee, I.M. (2018), "Risky ground prediction ahead of mechanized tunnel face using electrical methods: laboratory tests", KSCE Journal of Civil Engineerin, Vol. 22, No. 9, pp. 3663-3675. https://doi.org/10.1007/s12205-018-1357-z
  30. Reynolds, J.M. (2011), An Introduction to Applied and Environmental Geophysics, John Wiley & Sons, New York, pp. 292-294.
  31. Ryu, H.H., Cho, G.C., Sim, Y.J., Lee, I.M. (2008), "Detection of anomalies in particulate materials using electrical resistivity survey-enhanced algorithm", Modern Physics Letters B, Vol. 22, No. 11, pp. 1093-1098. https://doi.org/10.1142/S0217984908015899
  32. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G. (2005), "Electrical resistivity survey in soil science: a review", Soil and Tillage Research, Vol. 83, No. 2, pp. 173-193. https://doi.org/10.1016/j.still.2004.10.004
  33. Santamarina, J.C., Klein, K.A., Fam, M.A. (2001), Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley & Sons, New York, pp. 130.
  34. Schaeffer, K., Mooney, M.A. (2016), "Examining the influence of TBM-ground interaction on electrical resistivity imaging ahead of the TBM", Tunnelling and Underground Space Technology, Vol. 58, pp. 82-98. https://doi.org/10.1016/j.tust.2016.04.003
  35. Tatiya, R. (2005), Civil Excavations and Tunnelling: A Practical Guide, Thomas Telford, London, pp. 241-280.
  36. Telford, W.M., Geldart, L.P., Sheriff, R.E. (1990), Applied Geophysics (Second Edition), Cambridge University Press, Cambridge, pp. 535.
  37. Toth, A., Gong, Q., Zhao, J. (2013), "Case studies of TBM tunneling performance in rock-soil interface mixed ground", Tunnelling and Underground Space Technology, Vol. 38, pp. 140-150. https://doi.org/10.1016/j.tust.2013.06.001
  38. Van Nostrand, R.G., Cook, K.L. (1966), Interpretation of resistivity data, Professional Paper 499, United States Government Printing Office, pp. 52-55.