DOI QR코드

DOI QR Code

The Effect of Angiotensin II on the Hypertension Immune Mechanism in Salt-Sensitive Rats

염 민감성 쥐에서 안지오텐신 II가 고혈압 면역 기전에 미치는 영향

  • Mi-Hyang Hwangbo (Dept. of Food Nutrition and Cookery, Keimyung College University)
  • 황보미향 (계명문화대학교 식품영양조리학부 )
  • Received : 2023.09.13
  • Accepted : 2023.11.06
  • Published : 2023.12.31

Abstract

Hypertension caused by high-fat and high-salt diets is is a well-known significant risk factor for cardiovascular and cerebrovascular diseases. In this study, to confirm the relationship between hypertension and immune cells, angiotensin (Ang) II was administered to Dahl salt-sensitive (SS) rats and Dahl salt-resistant (SR) rats. Then the expression of immune cells and the proinflammatory cytokines were compared between the SS and SR rats. It was observed that after administration of Ang II (50ng/kg/min) for three weeks, blood pressure was increased in the SS rats, but there was no significant change in the SR rats. In addition, the expression of T helper (Th) cells and Th 17 cells in the spleen and the expression of Th cell Rorγt and regulatory T regulatory (Treg) cells in the peripheral blood mononuclear cells did not show a significant difference between the two experimental groups even after the administration of Ang II.IL-1β expression was significantly increased in the kidney tissue of the SS rats, while there was no significant difference in the IL-6 expression in all the experimental groups. The results of this study suggest that Ang II induces hypertension by stimulating IL-1β secretion from renal macrophage in SS rats.

Keywords

References

  1. Basile DP, Abais-Battad JM, Mattson DL. 2021. Contribution of Th17 cells to tissue injury in hypertension. Curr Opin Nephrol Hypertens 30:151-158 https://doi.org/10.1097/MNH.0000000000000680
  2. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 198:1875-1886 https://doi.org/10.1084/jem.20030152
  3. Dahl LK. 2005. Possible role of salt intake in the development of essential hypertension. Int J Epidemiol 34:967-972 https://doi.org/10.1093/ije/dyh317
  4. Della Penna SL, Roson MI, Toblli JE, Fernandez BE. 2015. Role of angiotensin II and oxidative stress in renal inflammation by hypernatremia: Benefits of atrial natriuretic peptide, losartan, and tempol. Free Radic Res 49:383-396 https://doi.org/10.3109/10715762.2015.1006216
  5. Emmerson A, Trevelin SC, Mongue-Din H, Becker PD, Ortiz C, Smyth LA, Peng Q, Elgueta R, Sawyer G, Ivetic A, Lechler RI, Lombardi G, Shah AM. 2018. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest 128:3088-3101 https://doi.org/10.1172/JCI97490
  6. Gonsalez SR, Ferrao FM, Souza AM, Lowe J, Morcillo LSL. 2018. Inappropriate activity of local renin-angiotensin-aldosterone system during high salt intake: Impact on the cardio-renal axis. J Bras Nefrol 40:170-178 https://doi.org/10.1590/2175-8239-jbn-3661
  7. Jia G, Aroor AR, Hill MA, Sowers JR. 2018. Role of renin-angiotensin-aldosterone system activation in promoting cardiovascular fibrosis and stiffness. Hypertension 72:537-548 https://doi.org/10.1161/HYPERTENSIONAHA.118.11065
  8. Kawarazaki W, Fujita T. 2021. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 17:350-363 https://doi.org/10.1038/s41581-021-00399-2
  9. Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, Diep H, Kett MM, Samuel CS, Kemp-Harper BK, Robertson AAB, Cooper MA, Peter K, Latz E, Mansell AS, Sobey CG, Drummond GR, Vinh A. 2019. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res 115:776-787 https://doi.org/10.1093/cvr/cvy252
  10. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, Rivas E, Tsai TF, Wasel N, Tyring S, Salko T, Hampele I, Notter M, Karpov A, Helou S, Papavassilis C ERASURE and FIXTURE Study Groups. 2014. Secukinumab in plaque psoriasis - Results of two phase 3 trials. N Engl J Med 371:326-338 https://doi.org/10.1056/NEJMoa1314258
  11. Lastra G, Dhuper S, Johnson MS, Sowers JR. 2010. Salt, aldosterone, and insulin resistance: Impact on the cardiovascular system. Nat Rev Cardiol 7:577-584 https://doi.org/10.1038/nrcardio.2010.123
  12. Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. 2019. Animal models of hypertension: A scientific statement from the American Heart Association. Hypertension 73:e87-e120 https://doi.org/10.1161/HYP.0000000000000090
  13. Li K, Guo D, Zhu H, Hering-Smith KS, Lee Hamm L, Ouyang J, Dong Y. 2010. Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am J Physiol Regul Integr Comp Physiol 299:R590-R595 https://doi.org/10.1152/ajpregu.00207.2009
  14. Ogata A, Tanaka T. 2012. Tocilizumab for the treatment of rheumatoid arthritis and other systemic autoimmune diseases: Current perspectives and future directions. Int J Rheumatol 2012:946048
  15. Pak HO, Sohn CY, Park JH. 2015. Dietary life related to sodium of participants in hypertension and diabetes preventive education at the Public Health Center. Korean J Food Nutr 28:219-227 https://doi.org/10.9799/ksfan.2015.28.2.219
  16. Park JP, Kang SA. 2020. Antioxidant effect and blood pressure control ability of Lactobacillus fermented Gastrodia elata Bl. in hypertension model rats (SHR). Korean J Food Nutr 33:493-504
  17. Piqueras L, Sanz MJ. 2020. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free Radic Biol Med 157:38-54 https://doi.org/10.1016/j.freeradbiomed.2020.02.002
  18. Schweda F. 2015. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch 467:565-576 https://doi.org/10.1007/s00424-014-1668-y
  19. Shevach EM, Thornton AM. 2014. tTregs, pTregs, and iTregs: Similarities and differences. Immunol Rev 259:88-102 https://doi.org/10.1111/imr.12160
  20. Sylvester MA, Pollow DP Jr, Moffett C, Nunez W, Uhrlaub JL, Nikolich-Zugich J, Brooks HL. 2022. Splenocyte transfer from hypertensive donors eliminates premenopausal female protection from ANG II-induced hypertension. Am J Physiol Renal Physiol 322:F245-F257 https://doi.org/10.1152/ajprenal.00369.2021
  21. Veiras LC, Bernstein EA, Cao DY, Okwan-Duodu D, Khan Z, Gibb DR, Roach A, Skelton R, Williams RM, Bernstein KE, Giani JF. 2022. Tubular IL-1β induces salt sensitivity in diabetes by activating renal macrophages. Circ Res 131:59-73 https://doi.org/10.1161/CIRCRESAHA.121.320239
  22. Wade B, Petrova G, Mattson DL. 2018. Role of immune factors in angiotensin II-induced hypertension and renal damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 314:R323-R333 https://doi.org/10.1152/ajpregu.00044.2017
  23. Weinberger MH, Fineberg NS, Edwin Fineberg S, Weinberger M. 2001. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37:429-432 https://doi.org/10.1161/01.HYP.37.2.429
  24. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK. 2013. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496:513-517 https://doi.org/10.1038/nature11984
  25. Wu Y, Takahashi H, Suzuki E, Kruzliak P, Soucek M, Uehara Y. 2016. Impaired response of regulator of Gαq signaling-2 mRNA to angiotensin II and hypertensive renal injury in Dahl salt-sensitive rats. Hypertens Res 39:210-216 https://doi.org/10.1038/hr.2015.132
  26. Xu C, Yu J. 2022. Pathophysiological mechanisms of hypertension development induced by fructose consumption. Food Funct 13:1702-1717 https://doi.org/10.1039/D1FO03381F
  27. Yun MJ, Kim YM. 2021. The relationship between subjects with metabolic syndrome diagnosed with disease and sodium intake for Korean adults. Culin Sci Hosp Res 27:194-209
  28. Zhang RM, McNerney KP, Riek AE, Bernal-Mizrachi C. 2021. Immunity and hypertension. Acta Physiol 231:e13487
  29. Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. 2022. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 13:1098725