DOI QR코드

DOI QR Code

Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7La3Zr2O12 Solid Electrolytes

  • Ahmed Tarif (Department of Materials Science and Engineering, Chonnam National University) ;
  • Chan-Jin Park (Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2023.11.10
  • Accepted : 2023.12.07
  • Published : 2023.12.29

Abstract

In this study, we synthesized and characterized garnet-type Li7-xAlxLa3Zr2-(5/4)yNbyO12 (LALZN) solid electrolytes for all-solid-state battery applications. Our novel approach focused on enhancing ionic conductivity, which is crucial for battery efficiency. A systematic examination found that co-doping with Al and Nb significantly improved this conductivity. Al3+ and Nb5+ ions were incorporated at Li+ and Zr4+ sites, respectively. This doping resulted in LALZN electrolytes with optimized properties, most notably enhanced ionic conductivity. An optimized mixture with 0.25 mol each of Al and Nb dopants achieved a peak conductivity of 1.32 × 10-4 S cm-1. We fabricated symmetric cells using these electrolytes and observed excellent charge-discharge profiles and remarkable cycling longevity, demonstrating the potential for long-term application in battery systems. The garnet-type LALZN solid electrolytes, with their high ionic conductivity and stability, show great potential for enhancing the performance of all-solid-state batteries. This study not only advances the understanding of effective doping strategies but also underscores the practical applicability of the LALZN system in modern energy storage solutions.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT, Korea (No. 2019R1A2C1084020 and No. 2018R1A5A1025224).

References

  1. M. Kotobuki and M. Koishi, Preparation of Li7La3Zr2O12 solid electrolyte via a sol-gel method, Ceramics International, 40, 5043 (2014). Doi: https://doi.org/10.1016/j.ceramint.2013.09.009 
  2. Y. Mizuno, H. Wagata, H. Onodera, K. Yubuta, T. Shishido, S. Oishi, and K. Teshima, Environmentally Friendly Flux Growth of High-Quality, Idiomorphic Li5-La3Nb2O12 Crystals, Crystal Growth & Design, 13, 479 (2013). Doi: https://doi.org/10.1021/cg3012348 
  3. A. Ramzy and V. Thangadurai, Tailor-Made Development of Fast Li Ion Conducting Garnet-Like Solid Electrolytes, ACS Applied Materials & Interfaces, 2, 385 (2010). Doi: https://doi.org/10.1021/am900643t 
  4. L. Dhivya and R. Murugan, Effect of Simultaneous Substitution of Y and Ta on the Stabilization of Cubic Phase, Microstructure, and Li+ Conductivity of Li7La3Zr2O12 Lithium Garnet, S Applied Materials & Interfaces, 6, 17606 (2014). Doi: https://doi.org/10.1021/am503731h 
  5. W. G. Zeier, S. Zhou, B. Lopez-Bermudez, K. Page, and B. C. Melot, Dependence of the Li-Ion Conductivity and Activation Energies on the Crystal Structure and Ionic Radii in Li6MLa2Ta2O12, ACS Applied Materials & Interfaces, 6, 10900 (2014). Doi: https://doi.org/10.1021/am4060194 
  6. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, and Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chemical Society Reviews, 46, 797 (2017). Doi: https://doi.org/10.1039/C6CS00491A 
  7. C. K. Chan, T. Yang, and J. Mark Weller, Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries, Electrochimica Acta, 253, 268 (2017). Doi: https://doi.org/10.1016/j.electacta.2017.08.130 
  8. J. H. Kim, Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries, Corrosion Science and Technology, 22, 287 (2023). Doi: https://doi.org/10.14773/CST.2023.22.4.287 
  9. J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu, X. Guo, Z. Di, X. Wang, and H. Li, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide, Nano Energy, 28, 447 (2016). Doi: https://doi.org/10.1016/j.nanoen.2016.09.002 
  10. J. -F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries, ACS Applied Materials & Interfaces, 9, 12461 (2017). Doi: https://doi.org/10.1021/acsami.7b00614 
  11. K. Aso, A. Sakuda, A. Hayashi, and M. Tatsumisago, All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li2S-P2S5 Solid Electrolytes by Pulsed Laser Deposition, ACS Applied Materials & Interfaces, 5, 686 (2013). Doi: https://doi.org/10.1021/am302164e 
  12. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy, 1, 16030 (2016). Doi: https://doi.org/10.1038/nenergy.2016.30 
  13. Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy & Environmental Science, 7, 627 (2014). Doi: https://doi.org/10.1039/C3EE41655K 
  14. L. J. Miara, N. Suzuki, W. D. Richards, Y. Wang, J. C. Kim, and G. Ceder, Li-ion conductivity in Li9S3N, Journal of Materials Chemistry A, 3, 20338 (2015). Doi: https://doi.org/10.1039/C5TA05432J 
  15. K. Arbi, J.M. Rojo, and J. Sanz, Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy, Journal of the European Ceramic Society, 27, 4215 (2007). Doi: https://doi.org/10.1016/j.jeurceramsoc.2007.02.118 
  16. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nature Materials, 10, 682 (2011). Doi: https://doi.org/10.1038/nmat3066 
  17. R. Murugan, V. Thangadurai, and W. Weppner, Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12, Angewandte Chemie International Edition, 46, 7778 (2007). Doi: https://doi.org/10.1002/anie.200701144 
  18. S. Xuefu, H. Nemori, S. Mitsuoka, P. Xu, M. Matsui, Y. Takeda, O. Yamamoto, and N. Imanishi, High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2-x-y(PO4)3 Solid Electrolyte, Frontiers in Energy Research, 4, 12 (2016). Doi: https://doi.org/10.3389/fenrg.2016.00012 
  19. F. Han, T. Gao, Y. Zhu, K.J. Gaskell, and C. Wang, A Battery Made from a Single Material, Advanced Materials, 27, 3473 (2015). Doi: https://doi.org/10.1002/adma.201500180 
  20. M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, and T. Yoshida, Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode, Journal of The Electrochemical Society, 157, A1076 (2010). Doi: https://doi.org/10.1149/1.3474232 
  21. K. Kajihara, N. Tezuka, M. Shoji, J. Wakasugi, H. Munakata, and K. Kanamura, Li4B4M3O12Cl (M = Al, Ga): An Electrochemically Stable, Lithium-Ion-Conducting Cubic Boracite with Substituted Boron Sites, Bulletin of the Chemical Society of Japan, 90, 1279 (2017). Doi: https://doi.org/10.1246/bcsj.20170242 
  22. J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, Journal of Solid State Chemistry, 182, 2046 (2009). Doi: https://doi.org/10.1016/j.jssc.2009.05.020 
  23. R. Wagner, G. J. Redhammer, D. Rettenwander, A. Senyshyn, W. Schmidt, M. Wilkening, and G. Amthauer, Crystal Structure of Garnet-Related Li-Ion Conductor Li7-3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?, Chemistry of Materials, 28, 1861 (2016). Doi: https://doi.org/10.1021/acs.chemmater.6b00038 
  24. C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor, Inorganic Chemistry, 50, 1089 (2011). Doi: https://doi.org/10.1021/ic101914e 
  25. N. Bernstein, M. D. Johannes, and K. Hoang, Origin of the Structural Phase Transition in Li7La3Zr2O12, Physical Review Letters, 109, 205702 (2012). Doi: https://doi.org/10.1103/PhysRevLett.109.205702 
  26. A. Duvel, A. Kuhn, L. Robben, M. Wilkening, and P. Heitjans, Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry, The Journal of Physical Chemistry C, 116, 15192 (2012). Doi: https://doi.org/10.1021/jp301193r 
  27. S. Afyon, F. Krumeich, and J. L. M. Rupp, A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries, Journal of Materials Chemistry A, 3, 18636 (2015). Doi: https://doi.org/10.1039/C5TA03239C 
  28. R. Jalem, M. J. D. Rushton, W. Manalastas, M. Nakayama, T. Kasuga, J. A. Kilner, and R. W. Grimes, Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes, Chemistry of Materials, 27, 2821 (2015). Doi: https://doi.org/10.1021/cm5045122 
  29. F. Aguesse, W. Manalastas, L. Buannic, J.M. Lopez del Amo, G. Singh, A. Llordes, and J. Kilner, Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal, ACS Applied Materials & Interfaces, 9, 3808 (2017). Doi: https://doi.org/10.1021/acsami.6b13925 
  30. D. Rettenwander, C. A. Geiger, M. Tribus, P. Tropper, and G. Amthauer, A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84, Inorganic Chemistry, 53, 6264 (2014). Doi: https://doi.org/10.1021/ic500803h 
  31. J. -F. Wu, E. -Y. Chen, Y. Yu, L. Liu, Y. Wu, W. K. Pang, V. K. Peterson, and X. Guo, Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity, ACS Applied Materials & Interfaces, 9, 1542 (2017). Doi: https://doi.org/10.1021/acsami.6b13902 
  32. A. K. Baral, S. Narayanan, F. Ramezanipour, and V. Thangadurai, Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2-xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy, Physical Chemistry Chemical Physics, 16, 11356 (2014). Doi: https://doi.org/10.1039/C4CP00418C 
  33. S. Ramakumar, L. Satyanarayana, S. V. Manorama, and R. Murugan, Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors, Physical Chemistry Chemical Physics, 15, 11327 (2013). Doi: https://doi.org/10.1039/C3CP50991E 
  34. Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries, Electrochimica Acta, 180, 37 (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.046 
  35. Y. Li, J.-T. Han, C.-A. Wang, H. Xie, and J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework, Journal of Materials Chemistry, 22, 15357 (2012). Doi: https://doi.org/10.1039/C2JM31413D 
  36. S. Ohta, T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0-2), Journal of Power Sources, 196, 3342 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2010.11.089 
  37. A. Dumon, M. Huang, Y. Shen, and C. W. Nan, High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet, Solid State Ionics, 243, 36 (2013). Doi: https://doi.org/10.1016/j.ssi.2013.04.016 
  38. E. Rangasamy, J. Wolfenstine, J. Allen, and J. Sakamoto, The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte, Journal of Power Sources, 230, 261 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2012.12.076 
  39. Y. Kihira, S. Ohta, H. Imagawa, and T. Asaoka, Effect of Simultaneous Substitution of Alkali Earth Metals and Nb in Li7La3Zr2O12 on Lithium-Ion Conductivity, ECS Electrochemistry Letters, 2, A56 (2013). Doi: https://doi.org/10.1149/2.001307eel 
  40. D. O. Shin, K. Oh, K. M. Kim, K. -Y. Park, B. Lee, Y. -G. Lee, and K. Kang, Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction, Scientific Reports, 5, 18053 (2015). Doi: https://doi.org/10.1038/srep18053 
  41. T. Yang, Y. Li, W. Wu, Z. Cao, W. He, Y. Gao, J. Liu, and G. Li, The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic, Ceramics International, 44, 1538 (2018). Doi: https://doi.org/10.1016/j.ceramint.2017.10.072 
  42. L. Buannic, B. Orayech, J.-M. Lopez Del Amo, J. Carrasco, N. A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, and A. Llordes, Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte, Chemistry of Materials, 29, 1769 (2017). Doi: https://doi.org/10.1021/acs.chemmater.6b05369 
  43. C. Deviannapoorani, L. Dhivya, S. Ramakumar, and R. Murugan, Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets, Journal of Power Sources, 240, 18 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2013.03.166 
  44. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, and L. Hu, Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3, e1601659 (2017). Doi: https://doi.org/10.1126/sciadv.1601659 
  45. S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine, J. L. Allen, N. Bernstein, D. A. Stewart, and M. D. Johannes, Structure and Stoichiometry in Supervalent Doped Li7La3Zr2O12, Chemistry of Materials, 27, 3658 (2015). Doi: https://doi.org/10.1021/acs.chemmater.5b00362