DOI QR코드

DOI QR Code

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Chanyoung Jeong (Department of Advanced Materials Engineering, Dong-eui University)
  • Received : 2023.10.14
  • Accepted : 2023.11.11
  • Published : 2023.12.29

Abstract

This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

Keywords

Acknowledgement

The authors thank Subin Park, a student at Dong-eui University, for helping with the experiment.

References

  1. C. Jeong, J. Lee, k. Sheppard and C. H. Choi, Airi-mpregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
  2. M. izmir and B. Ercan, Anodization of Titanium Alloys for Orthopedic Applications, Frontiers of Chemical Science and Engineering, 13, 28 (2019). Doi: https://doi.org/10.1007/s11705-018-1759-y
  3. Y. Alivov M. Pandikunta S. Nikishin and ZY. Fan, The Anodization Voltage Influence on the Properties of TiO2 Nanotubes Grown by Electrochemical Oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602
  4. Y. Park and C. Jeong, Comparison of Hydrophobicity and Corrosion Properties of Aluminum 5052 and 6061 Alloys After Anodized Surface Treatment, Corrosion Science and Technology, 21, 200 (2022). Doi: https://doi.org/10.14773/cst.2022.21.3.200
  5. C. Yao and T. J. Webster, Anodization: A Promising Nano-modification Technique of Titanium Implants for Orthopedic Applications, Journal of nanoscience and nanotechnology, 6, 2682 (2006). Doi: https://doi.org/10.1166/jnn.2006.447
  6. C. J. Donahue and J. A. Exline, Anodizing and Coloring Aluminum Alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598
  7. C. Jeong, J. Jung, K. Sheppard and C. H. Choi, Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening, Nanomaterials, 13, 342 (2023). Doi: https://doi.org/10.3390/nano13020342
  8. S. Lin, H. Greene, H. Shin and F. Mansfeld, Corrosion Protection of Al/SiC Metal Matrix Composites by Anodizing, Corrosion, 48, 61 (1992). Doi: https://doi.org/10.5006/1.3315920
  9. F. Nowruzi, R. Imani and S, Faghihi, Effect of Electrochemical Oxidation and Drug Loading on the Antibacterial Properties and Cell Biocompatibility of Titanium Substrates, Scientific Reports, 12, 1 (2022). Doi: https://doi.org/10.1038/s41598-022-12332-z
  10. Z. B. Xie, S. Adams, D. J. Blackwood and J. Wang, The Effects of Anodization Parameters on Titania Nanotube Arrays and Dye Sensitized Solar Cells, Nanotechnology, 19, 405701 (2008). Doi: https://doi.org/10.1088/0957-4484/19/40/405701
  11. W. J. Stepniowski and Z. Bojar, Synthesis of Anodic Aluminum Oxide (AAO) at Relatively High Temperatures. Study of the Influence of Anodization Conditions on the Alumina Structural Features, Surfaces and Coatings technology, 206, 265 (2011). Doi: https://doi.org/10.1016/j.surfcoat.2011.07.020
  12. H. Ji and C. Jeong, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy. Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
  13. C. C. Chen, W. D. Jehng, L. L. Li and E. W. G. Diau, Enhanced Efficiency of Dye-sensitized Solar Cells Using Anodic Titanium Oxide Nanotube Arrays, Journal of the Electrochemical Society, 156, C304 (2009). Doi: https://doi.org/10.1149/1.3153288
  14. L. Bouchama, N. Azzouz, N. Boumouche, J. P. Chopart, A. L. Daltin and Y. Bouznit, Enhancing Aluminum Corrosion Resistance by Two-Step Anodizing Process, Surface and Coating Technology, 235, 676 2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046
  15. Y. Kim and W. B. Kim, Enhancing the Surface Hydrophilicity of an Aluminum Alloy Using Two-Step Anodizing and the Effect on Inkjet Printing Characteristics, Coatings, 13, 232 (2023). Doi: https://doi.org/10.3390/coatings13020232
  16. X. Wang and G. R. Han, Fabrication and Characterization of Anodic Aluminum Oxide Template, Microelectronic Engineering, 66, 166 (2003). Doi: https://doi.org/10.1016/S0167-9317(03)00042-X
  17. J. S. Kim and C. Jeong, A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method, Corrosion Science and Technology, 21, 209 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290
  18. C. C Chen, H. W. Chung, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung and E. W. G. Diau, Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar, The Journal of Physical chemistry C, 112, 19151 (2008). Doi: https://doi.org/10.1021/jp806281r
  19. Y. Choi and C. Jeong, Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium, Corrosion Science and Technology, 22, 193 (2023). Doi: https://doi.org/10.14773/cst.2023.22.3.193
  20. T. Kikuchi, O. Nishinaga, S. Natsui and R. O. Suzuki, Fabrication of Self-ordered Porous Alumina via Etidronic Acid Anodizing and Structural Color Generation from Submicrometer-Scale Dimple Array, Electrochimica Acta, 156, 235 (2015). Doi: https://doi.org/10.1016/j.electacta.2014.12.171
  21. J. Zhao, X. Wang, R. Chen and L. Li, Fabrication of Titanium Oxide Nanotube Arrays by Anodic Oxidation, Solid State Communications, 134, 705 (2005). Doi: https://doi.org/10.1016/j.ssc.2005.02.028
  22. W. J. Stepniowski, D. Zasada and Z. Bojar, First Step of Anodization Influences the Final Nanopore Arrangement in Anodized Alumina, Surface and Coatings Technology, 206, 1416 (2011). Doi: https://doi.org/10.1016/j.surfcoat.2011.09.004
  23. H. Ji and C. Jeong, Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy, Journal of the Korean Institute of Surface Engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372
  24. J. Li, H. Wei, K. Zhao, M. Wang, D. Chen and M. Chen, Effect of Anodizing Temperature and Organic Acid Addition on the Structure and Corrosion Resistance of Anodic Aluminum Oxide Films, Thin Solid Films, 713, 138389 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138359
  25. Y. Huang, H, Shih, J. Daugherty. S. Wu, S. Ramanathan, C. Chang and F. Mansfeld, Evaluation of the Corrosion Resistance of Anodized Aluminum 6061 Using Electrochemical Impedance Spectroscopy (EIS), Corrosion Science, 50, 3569 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.09.008
  26. Y. Zuo, P. H. Zhao and J. M. Zhao, The Influences of Sealing Methods on Corrosion Behavior of Anodized Aluminum Alloys in NaCl Solutions, Surface and Coatings Technology, 166, 237 (2003). Doi: https://doi.org/10.1016/S0257-8972(02)00779-X
  27. M. Mehdizade, M. Soltanieh and A. R. Eivani, Investigation of Anodizing Time and Pulse Voltage Modes on the Corrosion Behavior of Nanostructured Anodic Layer in Commercial Pure Aluminum, Surface and Coatings Technology, 358, 741 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2018.08.046
  28. J. Lee, S. Shin, Y. Jiang, C. Jeong, H. A. Stone and C. H. Choi, Oil?Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self?healing, Advanced Functional Materials, 27, 1606040 (2017). Doi: https://doi.org/10.1002/adfm.201606040
  29. L. Feng, H. Zhang, Z. Wang and Y. Liu, Superhydrophobic Aluminum Alloy Surface: Fabrication, Structure and Corrosion Resistance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 319 (2014). Doi: https://doi.org/10.1016/j.colsurfa.2013.09.014
  30. M. Norek, M. Dopierala and W. J. Stepniowski, Ethanol Influence on Arrangement and Geometrical Parameters of Aluminum Concaves Prepared in a Modified Hard Anodization for Fabrication of Highly Ordered Nanoporous Alumina, Journal of Electroanalytical Chemistry, 750, 79 (2015). Doi: https://doi.org/10.1016/j.jelechem.2015.05.024
  31. G. X. Xiang, S. Y. Li, H. Song and Y. G. Nan, Fabrication of Modifier-Free Superhydrophobic Surfaces with AntiIcing and Self-Cleaning Properties on Ti Substrate by Anodization Method, Microelectronic Engineering, 233, 111430 (2020). Doi: https://doi.org/10.1016/j.mee.2020.111430
  32. J. Zang, S. Yu, G. Zhu and X. Zhou, Fabrication of Superhydrophobic Surface on Aluminum Alloy 6061 by a Facile and Effective Anodic Oxidation Method, Surface and Coatings Technology, 380, 125078 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.125078
  33. C. Jeong and C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
  34. M. A. Hormozi, M. Yahoubi and M. E. Bahrololoom, A Facile Method for Fabrication of Hybrid Hydrophobic-Hydrophilic Surfaces on Anodized Aluminum Template by Electrophoretic Deposition, Thin Solid Films, 724, 138597 (2021). Doi: https://doi.org/10.1016/j.tsf.2021.138597
  35. H. Sakaue, T. Tabei and M. Kameda, Hydrophobic Monolayer Coating on Anodized Aluminum Pressure-Sensitive Paint, Sensors and Actuators B: Chemical, 119, 504 (2006). Doi: https://doi.org/10.1016/j.snb.2006.01.010
  36. Z. Wu, C. Richter and L. Menon, A Study of Anodization Process during Pore Formation in Nanoporous Alumina Templates, Journal of the Electrochemical Society, 154, E8 (2006). Doi: http://doi.org/10.1149/1.2382671
  37. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and z Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
  38. W. Lee and S. J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemical Reviews, 114, 7487 (2014). Doi: https://doi.org/10.1021/cr500002z