DOI QR코드

DOI QR Code

Correlation between clinical changes and viral genome copy number in rock bream infected with red sea bream iridovirus

참돔이리도바이러스 감염 돌돔에서 임상적 변화와 viral genome copy number 간의 상관관계

  • Dong Jun Shin (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Yi Seol Jeong (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Min Jae Kim (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Guk Hyun Kim (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kwang Il Kim (Department of Aquatic Life Medicine, Pukyong National University)
  • 신동준 (부경대학교 수산생명의학과) ;
  • 정이설 (부경대학교 수산생명의학과) ;
  • 김민재 (부경대학교 수산생명의학과) ;
  • 김국현 (부경대학교 수산생명의학과) ;
  • 김광일 (부경대학교 수산생명의학과)
  • Received : 2023.11.06
  • Accepted : 2023.11.27
  • Published : 2023.12.31

Abstract

In this study, the correlation between clinical changes and RSIV genome copy number was investigated to determine the quantitative criteria for the characteristics of RSIV infection. The rock bream (Oplegnathus fasciatus) was intraperitoneally injected with three different doses (1.0×101, 1.0×103 and 1.0×105 viral genome copies/fish) as low, medium, and high doses, respectively. The clinical signs (spleen enlargement, death) observation and real-time PCR were conducted at 5, 10 and 14 days post-injection. During the experiment, spleen index as a quantitative indicator for spleen enlargement was continuously increased in the medium- (up to 2.26) and high-dose (up to 4.99) challenge groups, respectively. Notably, when the spleen index was over 1.5, 2.0, 2.5 and 3.0, a positive correlation was revealed with average viral genome copy numbers of 2.51, 3.37, 4.97 and 5.43×107 viral genome copies/mg, respectively. Moreover, the threshold of spleen index over 1.5 was 1.0×106 viral genome copies/mg, while the thresholds of spleen index over 2.0 and dead was 2.51×107 viral genome copies/mg and the thresholds of spleen index over 2.5 and 3 was 3.98×107 viral genome copies/mg. These findings suggest the possibility of quantitatively analyzing the characteristics and development process of RSIV infection.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2022R1I1A2064371)

References

  1. de Groof, A., Guelen, L., Deijs, M., van der Wal, Y., Miyata, M., Ng, K. S., van Grinsven, L., Simmelink, B., Biermann, Y., Grisez, L., van Lent, J., de Ronde, A., Chang, S. F., Schrier, C. and van der Hoek, L.: A novel virus causes scale drop disease in Lates calcarifer. PLoS pathogens, 11(8): e1005074, 2015. https://doi.org/10.1371/journal.ppat.1005074
  2. Gibson-Kueh, S., Ngoh-Lim, G. H., Netto, P., Kurita, J., Nakajima, K. and Ng, M. L.: A systemic iridoviral disease in mullet, Mugil cephalus L., and tiger grouper, Epinephelus fuscoguttatus Forsskal: a first report and study. Journal of Fish Diseases, 27: 693-699, 2004. https://doi.org/10.1111/j.1365-2761.2004.00589.x
  3. Girisha, S. K., Puneeth, T. G., Nithin, M. S., Kumar, B. N., Ajay, S. K., Vinay, T. N., Suresh, T., Venugopal M.N., Ramesh, K. S.: Red sea bream iridovirus disease (RSIVD) outbreak in Asian seabass (Lates calcarifer) cultured in open estuarine cages along the west coast of India: First report. Aquaculture, 520: 734712, 2020. https://doi.org/10.1016/j.aquaculture. 2019.734712
  4. Inouye, K., Yamano, K., Maeno, Y., Nakajima, K., Matsuoka, M., Wada, Y. and Sorimachi, M.: Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathology, 27: 19-27, 1992. https://doi.org/10.3147/jsfp.27.19
  5. Jeong, M. A., Jeong, Y. J. and Kim, K. I.: Virulence difference between red sea bream iridovirus mixed subtype I/II and subtype II and the expression of viral and apoptosis-related genes in infected rock bream (Oplegnathus fasciatus). Fish & Shellfish Immunology, 127:195-202, 2022. https://doi.org/10.1016/j.fsi.2022.05.041
  6. Jeong, Y. J., Kim, Y. C., Min, J. G., Jeong, M. A. and Kim, K. I.: Characterization of rock bream (Oplegnathus fasciatus) fin cells and its susceptibility to different genotypes of megalocytiviruses. Journal of Fish Pathology, 34(2) 149-159. 2021. https://doi.org/10.7847/jfp.2021.34.2.149
  7. Jin, J. W., Cho, H. J., Kim, K. I., Jeong, J. B., Park, G. H. and Jeong, H. D.: Quantitative analysis of the clinical signs in marine fish induced by Megalocytivirus infection. Journal of Fish Pathology, 24: 53-64, 2011. https://doi.org/10.7847/jfp.2011.24.2.053
  8. Jung, M. H. and Jung, S. J.: Correlation of virus replication and spleen index in rock bream iridovirus infected rock bream Oplegnathus fasciatus. Journal of Fish Pathology, 32(1):1-8, 2019. http://dx.doi.org/10.7847/jfp.2019.32.1.001
  9. Jung, S. J., & Oh, M. J.: Iridovirus-like infection associated with high mortalities of striped beakperch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. Journal of Fish Diseases, 23(3):223-226, 2000. https://doi.org/10.1046/j.1365-2761.2000.00212.x
  10. Kawato, Y., Mekata, T., Inada, M. and Ito, T.: Application of environmental DNA for monitoring Red Sea bream Iridovirus at a fish farm. Microbiology Spectrum, 9(2): e00796-21, 2021. https://doi.org/10.1128/Spectrum.00796-21
  11. Kim, K. H., Choi, K. M., Kang, G., Woo, W. S., Sohn, M. Y., Son, H. J., Yun, D. B., Kim, D. H. and Park, C. I.: Development and validation of a quantitative polymerase chain reaction assay for the detection of red sea bream iridovirus. Fishes, 7: 236, 2022. https://doi.org/10.3390/fishes7050236
  12. Kim, G. H., Kim, M. J., Choi, H. J., Koo, M. J., Kim, M. J., Min, J. G. and Kim, K. I. : Evaluation of a novel TaqMan probe-based real-time polymerase chain reaction (PCR) assay for detection and quantitation of red sea bream iridovirus. Fisheries and Aquatic Sciences, 24:351-359, 2021. https://doi.org/10.47853/FAS.2021.e34
  13. Kurita, J. and Nakajima, K. Megalocytiviruses. Viruses, 4:521-538, 2012. https://doi.org/10.3390/v4040521
  14. Kurita, J., Nakjima, K., Hirono, I. and Aoki T.: Polymerase chain reaction (PCR) amplification of DNA of red sea bream iridovirus (RSIV). Fish Pathol., 33:17-23, 1998. https://doi.org/10.3147/jsfp.33.17
  15. Kwon, W. J., Choi, J. C., Hong, S., Kim, Y. C., Jeong, M. G., Min, J. G., Jeong, J. B., Jeong, H. D.: Development of a high-dose vaccine formulation for prevention of megalocytivirus infection in rock bream (Oplegnathus fasciatus). Vaccine, 38(51):8107-8115, 2020. https://doi.org/10.1016/j.vaccine.2020.11.001
  16. Lee, E. S., Cho, M., Min, E. Y., Jung, S. H., & Kim, K. I.: Novel peptide nucleic acid-based real-time PCR assay for detection and genotyping of Megalocytivirus. Aquaculture, 518:734-818, 2020. https://doi.org/10.1016/j.aquaculture.2019.734818
  17. Lee, W. L., Kim, S. R., Yun, H. M., Kitamura, S. I., Jung, S. J. and Oh, M. J.: Detection of red sea bream iridovirus (RSIV) from marine fish in the Southern coastal area and East China Sea. Journal of fish pathology., 20:211-220, 2007. https://www.ksfp.org/28/3262731
  18. Mihm, S., Fayyazi, A., Hartmann, H. and Ramadori, G.: Analysis of histopathological manifestations of chronic hepatitis C virus infection with respect to virus genotype. Hepatology, 25(3):735-739, 1997. https://doi.org/10.2331/fishsci.63.735
  19. Sohn, S. G., Choi, D. L., Do, J. W., Hwang, J. Y. and Park, J. W: Mass mortalities of cultured striped beakperch, Oplegnathus fasciatus by iridoviral infection. Journal of fish pathology, 13(2):121-127, 2000. https://www.ksfp.org/28/3057924
  20. WOAH, World Organization for Animal Health, Manual of Diagnostic Tests for Aquatic Animal. Chapter 2.3.7. Red sea bream iridoviral disease. 2021. https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.3.07_RSIVD.pdf