DOI QR코드

DOI QR Code

A Study on the Efficient Load Balancing Method Considering Real-time Data Entry form in SDN Environment

SDN 환경에서 실시간 데이터 유입형태를 고려한 효율적인 부하분산 기법 연구

  • Received : 2023.09.14
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

The rapid growth and increasing complexity of modern networks have highlighted the limitations of traditional network architectures. The emergence of SDN (Software-Defined Network) in response to these challenges has changed the existing network environment. The SDN separates the control unit and the data unit, and adjusts the network operation using a centralized controller. However, this structure has also recently caused a huge amount of traffic due to the rapid spread of numerous Internet of Things (IoT) devices, which has not only slowed the transmission speed of the network but also made it difficult to ensure quality of service (QoS). Therefore, this paper proposes a method of load distribution by switching the IP and any server (processor) from the existing data processing scheduling technique, RR (Round-Robin), to mapping when a large amount of data flows in from a specific IP, that is, server overload and data loss.

현대 네트워크의 급속한 성장과 복잡성 증가는 전통적인 네트워크 아키텍처의 한계를 부각시켰다. 이러한 과제에 대응한 SDN(Software-Defined Network)의 등장은 기존의 네트워크 환경을 변화시켰다. SDN은 제어부와 데이터부를 분리하고 중앙 집중식 컨트롤러를 사용하여 네트워크 동작을 조정한다. 하지만 이러한 구조도 최근 수많은 IoT(Internet of Things) 기기의 급속한 확산으로 엄청난 양의 트래픽이 발생하게 되었고 이는 네트워크의 전송 속도를 느리게 할 뿐 아니라 QoS(Quality of Service)를 보장하기 어렵게 만들었다. 이에 본 논문에서는 어느 특정 IP에서 다량의 데이터가 유입되는 경우 즉, 서버 과부화 및 데이터 손실이 발생하게 되어 전체적인 네트워크 지연이 발생할 시 기존의 데이터처리 스케줄링 기법인 RR(Round-Robin) 방식에서 해당 IP와 임의의 서버(처리기)를 Mapping 하는 방식으로 전환하여 데이터를 부하분산하는 기법을 제안하고자 한다.

Keywords

References

  1. N. McKeown,, "OpenFlow: enabling innovation in campus networks", ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, 2008, pp. 69-74. https://doi.org/10.1145/1355734.1355746
  2. Q. He, X. Wang, and M. Huang, "OpenFlow based low overhead and high accuracy SDN measurement framework", Transactions on Emerging Telecommunications Technologies, vol. 29, no 2, 2018, pp. 3263.
  3. Y. C. Wang and S. Y. You, "An efficient route management framework for load balance and overhead reduction in SDN-based data center networks", IEEE Transactions on Network and Service Management vol. 15, no. 4, 2018, pp. 1422-1434. https://doi.org/10.1109/TNSM.2018.2872054
  4. P. Dely, A. Kassler, and N. Bayer, "Openflow for wireless mesh networks", International Conference on Computer Communications and Networks, Lahaina, HI, USA, 2011, pp. 1-6.
  5. Wenfeng Xia, "A Servey on Software-Defined Networking", IEEE COMMUNICATION SURVEYS & TUTORIALS, vol. 17, Issue. 1, 2015, pp. 27-51. https://doi.org/10.1109/COMST.2014.2330903
  6. Diego Kreutz, "Software-Defined Networking: A Comprehensive Survey", Proceedings of the IEEE, vol. 103, issue 1, 2014, pp. 14-76. https://doi.org/10.1109/JPROC.2014.2371999
  7. Yunchun. Li, "MultiClassifier: A combination of DPI and ML for application-layer classification is SDN", International Conference on Systems and Informatics, Shanghai, China, 2014, pp. 15-17.
  8. J. Yoon and T. Kwon, "An Efficient Load Balancing Technique Considering Forms of Data Generation in SDNs," J. of Korea Mutimedia Society, vol. 22, no. 2, 2020, pp. 247-254
  9. J. Kim and T. Kwon, "Efficient Load Balancing Technique Considering Data Generation Form and Server Response Time in SDN", J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, 2020, pp. 679-686.
  10. J. Yoon and T. Kwon, "Efficient Load Balancing Techniques Based on Packet Types and Real-Time QoS Evaluation in SDN", J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, 2021, pp. 807-816.