DOI QR코드

DOI QR Code

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Received : 2023.05.02
  • Accepted : 2023.11.13
  • Published : 2023.09.25

Abstract

This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

Keywords

References

  1. Ajaj, R.M. and Friswell, M.I. (2018), "Aeroelasticity of compliant span morphing wings", Smart Mater. Struct., 27(10), 105052. https://doi.org/10.1088/1361-665X/aad219.
  2. Ajaj, R.M., Omar, F.K., Darabseh, T.T. and Cooper, J. (2019), "Flutter of telescopic span morphing wings", Int. J. Struct. Stab. Dyn., 19(06), 1950061. https://doi.org/10.1142/S0219455419500615.
  3. Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (2013), Aeroelasticity, Courier Corporation.
  4. Chang, J.R., Lin, W.J., Huang, C.J. and Choi, S.T. (2010), "Vibration and stability of an axially moving Rayleigh beam", Appl. Math. Model., 34(6), 1482-1497. https://doi.org/10.1016/j.apm.2009.08.022.
  5. Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John wiley & sons.
  6. Duan, Y.C., Wang, J.P., Wang, J.Q., Liu, Y.W. and Shao, F. (2014), "Theoretical and experimental study on the transverse vibration properties of an axially moving nested cantilever beam", J. Sound Vib., 333(13), 2885-2897. https://doi.org/10.1016/j.jsv.2014.02.021.
  7. Friswell, M.I. and Inman, D.J. (2006), "Morphing concepts for UAVs", 21st Bristol UAV Systems Conference, April.
  8. Goland, M. and Luke, Y.L. (1948), "The flutter of a uniform wing with tip weights", 13-20.
  9. Huang, C., Chao, Y.A.N.G., Zhigang, W.U. and Changhong, T.A.N.G. (2018), "Variations of flutter mechanism of a span-morphing wing involving rigid-body motions", Chin. J. Aeronaut., 31(3), 490-497. https://doi.org/10.1016/j.cja.2017.12.014.
  10. Huang, R. and Qiu, Z. (2013), "Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process", Chin. J. Aeronaut., 26(6), 1430-1438. https://doi.org/10.1016/j.cja.2013.07.047.
  11. Li, W. and Jin, D. (2018), "Flutter suppression and stability analysis for a variable-span wing via morphing technology", J. Sound Vib., 412, 410-423. https://doi.org/10.1016/j.jsv.2017.10.009.
  12. Lottati, I. (1987), "Aeroelastic stability characteristics of a composite swept wing withtip weights for an unrestrained vehicle", J. Aircraft, 24(11), 793-802. https://doi.org/10.2514/3.45523.
  13. Moravej Barzani, S.H., Shahverdi, H. and Amoozgar, M. (2022), "Nonlinear aeroelastic stability analysis of a two-stage axially moving telescopic wing by using fully intrinsic equations", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 236(15), 3102-3110. https://doi.org/10.1177/09544100221080117.
  14. Moravej Barzani, S.H., Shahverdi, H. and Amoozgar, M. (2023), "Parametric study on the dynamic aeroelastic analysis of a two-stage axially deploying telescopic wing", J. Vib. Control, 29(9-10), 2021-2034. https://doi.org/10.1177/10775463221074145.
  15. Park, S., Yoo, H.H. and Chung, J. (2013), "Vibrations of an axially moving beam with deployment or retraction", AIAA J., 51(3), 686-696. https://doi.org/10.2514/1.J052059.
  16. Patil, M.J. (1999), Nonlinear Aeroelastic Analysis, Flight Dynamics, and Control of a Complete Aircraft, Georgia Institute of Technology.
  17. Peters, D.A., Karunamoorthy, S. and Cao, W.M. (1995), "Finite state induced flow models. I-Two-dimensional thin airfoil", J. Aircraft, 32(2), 313-322. https://doi.org/10.2514/3.46718.
  18. Raftoyiannis, I.G. and Michaltsos, G.T. (2013), "Dynamic behavior of telescopic cranes boom", Int. J. Struct. Stab. Dyn., 13(01), 1350010. https://doi.org/10.1142/S0219455413500107.
  19. Salami, S.J. and Dariushi, S. (2018), "Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation", Steel Compos. Struct., 27(3), 273-283. https://doi.org/10.12989/scs.2018.27.3.273.
  20. Schmidt, D.K., Zhao, W. and Kapania, R.K. (2016), "Flight-dynamics and flutter modeling and analyses of a flexible flying-wing drone-invited", AIAA Atmospheric Flight Mechanics Conference, 1748. https://doi.org/10.2514/6.2016-1748.
  21. Shafaghat, S., Noorian, M.A. and Irani, S. (2022), "Nonlinear aeroelastic analysis of a HALE aircraft with flexible components", Aerosp. Sci. Technol., 127, 107663. https://doi.org/10.1016/j.ast.2022.107663.
  22. Stylianou, M. and Tabarrok, B. (1994a), "Finite element analysis of an axially moving beam, part I: time integration", J. Sound Vib., 178(4), 433-453. https://doi.org/10.1006/jsvi.1994.1497.
  23. Sui, W., Zhu, Z. and Cao, G. (2016), "Dynamic responses of axially moving telescopic mechanism for truss structure bridge inspection vehicle under moving mass", J. Vibroeng., 18(1), 408-416.
  24. Sui, W., Zhu, Z., Cao, G. and Chen, G. (2016), "Dynamic behaviors of 2-DOF axially telescopic mechanism for truss structure bridge inspection vehicle", J. Vibroeng., 18(2), 1145-1156. https://doi.org/10.21595/jve.2016.16436.
  25. Wang, P.K.C. and Wei, J.D. (1987), "Vibrations in a moving flexible robot arm", J. Sound Vib., 116(1), 149-160. https://doi.org/10.1016/S0022-460X(87)81326-3.
  26. Yang, X.D. and Zhang, W. (2014), "Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations", Nonlin. Dyn., 78, 2547-2556. https://doi.org/10.1007/s11071-014-1609-5.
  27. Yang, X.D., Zhang, W. and Melnik, R.V. (2016), "Energetics and invariants of axially deploying beam with uniform velocity", AIAA J., 54(7), 2183-2189. https://doi.org/10.2514/1.J054383.
  28. Zhang, W., Lu, S.F. and Yang, X.D. (2014), "Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate", Nonlin. Dyn., 76, 69-93. https://doi.org/10.1007/s11071-013-1111-5.
  29. Zhang, W., Chen, L.L., Guo, X.Y. and Sun, L. (2017), "Nonlinear dynamical behaviors of deploying wings in subsonic air flow", J. Fluid. Struct., 74, 340-355. https://doi.org/10.1016/j.jfluidstructs.2017.04.006.