References
- Ajaj, R.M. and Friswell, M.I. (2018), "Aeroelasticity of compliant span morphing wings", Smart Mater. Struct., 27(10), 105052. https://doi.org/10.1088/1361-665X/aad219.
- Ajaj, R.M., Omar, F.K., Darabseh, T.T. and Cooper, J. (2019), "Flutter of telescopic span morphing wings", Int. J. Struct. Stab. Dyn., 19(06), 1950061. https://doi.org/10.1142/S0219455419500615.
- Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (2013), Aeroelasticity, Courier Corporation.
- Chang, J.R., Lin, W.J., Huang, C.J. and Choi, S.T. (2010), "Vibration and stability of an axially moving Rayleigh beam", Appl. Math. Model., 34(6), 1482-1497. https://doi.org/10.1016/j.apm.2009.08.022.
- Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John wiley & sons.
- Duan, Y.C., Wang, J.P., Wang, J.Q., Liu, Y.W. and Shao, F. (2014), "Theoretical and experimental study on the transverse vibration properties of an axially moving nested cantilever beam", J. Sound Vib., 333(13), 2885-2897. https://doi.org/10.1016/j.jsv.2014.02.021.
- Friswell, M.I. and Inman, D.J. (2006), "Morphing concepts for UAVs", 21st Bristol UAV Systems Conference, April.
- Goland, M. and Luke, Y.L. (1948), "The flutter of a uniform wing with tip weights", 13-20.
- Huang, C., Chao, Y.A.N.G., Zhigang, W.U. and Changhong, T.A.N.G. (2018), "Variations of flutter mechanism of a span-morphing wing involving rigid-body motions", Chin. J. Aeronaut., 31(3), 490-497. https://doi.org/10.1016/j.cja.2017.12.014.
- Huang, R. and Qiu, Z. (2013), "Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process", Chin. J. Aeronaut., 26(6), 1430-1438. https://doi.org/10.1016/j.cja.2013.07.047.
- Li, W. and Jin, D. (2018), "Flutter suppression and stability analysis for a variable-span wing via morphing technology", J. Sound Vib., 412, 410-423. https://doi.org/10.1016/j.jsv.2017.10.009.
- Lottati, I. (1987), "Aeroelastic stability characteristics of a composite swept wing withtip weights for an unrestrained vehicle", J. Aircraft, 24(11), 793-802. https://doi.org/10.2514/3.45523.
- Moravej Barzani, S.H., Shahverdi, H. and Amoozgar, M. (2022), "Nonlinear aeroelastic stability analysis of a two-stage axially moving telescopic wing by using fully intrinsic equations", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 236(15), 3102-3110. https://doi.org/10.1177/09544100221080117.
- Moravej Barzani, S.H., Shahverdi, H. and Amoozgar, M. (2023), "Parametric study on the dynamic aeroelastic analysis of a two-stage axially deploying telescopic wing", J. Vib. Control, 29(9-10), 2021-2034. https://doi.org/10.1177/10775463221074145.
- Park, S., Yoo, H.H. and Chung, J. (2013), "Vibrations of an axially moving beam with deployment or retraction", AIAA J., 51(3), 686-696. https://doi.org/10.2514/1.J052059.
- Patil, M.J. (1999), Nonlinear Aeroelastic Analysis, Flight Dynamics, and Control of a Complete Aircraft, Georgia Institute of Technology.
- Peters, D.A., Karunamoorthy, S. and Cao, W.M. (1995), "Finite state induced flow models. I-Two-dimensional thin airfoil", J. Aircraft, 32(2), 313-322. https://doi.org/10.2514/3.46718.
- Raftoyiannis, I.G. and Michaltsos, G.T. (2013), "Dynamic behavior of telescopic cranes boom", Int. J. Struct. Stab. Dyn., 13(01), 1350010. https://doi.org/10.1142/S0219455413500107.
- Salami, S.J. and Dariushi, S. (2018), "Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation", Steel Compos. Struct., 27(3), 273-283. https://doi.org/10.12989/scs.2018.27.3.273.
- Schmidt, D.K., Zhao, W. and Kapania, R.K. (2016), "Flight-dynamics and flutter modeling and analyses of a flexible flying-wing drone-invited", AIAA Atmospheric Flight Mechanics Conference, 1748. https://doi.org/10.2514/6.2016-1748.
- Shafaghat, S., Noorian, M.A. and Irani, S. (2022), "Nonlinear aeroelastic analysis of a HALE aircraft with flexible components", Aerosp. Sci. Technol., 127, 107663. https://doi.org/10.1016/j.ast.2022.107663.
- Stylianou, M. and Tabarrok, B. (1994a), "Finite element analysis of an axially moving beam, part I: time integration", J. Sound Vib., 178(4), 433-453. https://doi.org/10.1006/jsvi.1994.1497.
- Sui, W., Zhu, Z. and Cao, G. (2016), "Dynamic responses of axially moving telescopic mechanism for truss structure bridge inspection vehicle under moving mass", J. Vibroeng., 18(1), 408-416.
- Sui, W., Zhu, Z., Cao, G. and Chen, G. (2016), "Dynamic behaviors of 2-DOF axially telescopic mechanism for truss structure bridge inspection vehicle", J. Vibroeng., 18(2), 1145-1156. https://doi.org/10.21595/jve.2016.16436.
- Wang, P.K.C. and Wei, J.D. (1987), "Vibrations in a moving flexible robot arm", J. Sound Vib., 116(1), 149-160. https://doi.org/10.1016/S0022-460X(87)81326-3.
- Yang, X.D. and Zhang, W. (2014), "Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations", Nonlin. Dyn., 78, 2547-2556. https://doi.org/10.1007/s11071-014-1609-5.
- Yang, X.D., Zhang, W. and Melnik, R.V. (2016), "Energetics and invariants of axially deploying beam with uniform velocity", AIAA J., 54(7), 2183-2189. https://doi.org/10.2514/1.J054383.
- Zhang, W., Lu, S.F. and Yang, X.D. (2014), "Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate", Nonlin. Dyn., 76, 69-93. https://doi.org/10.1007/s11071-013-1111-5.
- Zhang, W., Chen, L.L., Guo, X.Y. and Sun, L. (2017), "Nonlinear dynamical behaviors of deploying wings in subsonic air flow", J. Fluid. Struct., 74, 340-355. https://doi.org/10.1016/j.jfluidstructs.2017.04.006.