DOI QR코드

DOI QR Code

Hibiscus manihot leaves Attenuate Accumulation of Lipid Droplets by Activating Lipolysis, Browning and Autophagy, and Inhibiting Proliferation of 3T3-L1 Cells

  • Na Gyeong Geum (Department of Forest Science, Andong National University) ;
  • Jeong Won Choi (Department of Forest Science, Andong National University) ;
  • Hyeok Jin Choi (Department of Forest Science, Andong National University) ;
  • Gwang Hyeon Ryu (Department of Forest Science, Andong National University) ;
  • Jin Boo Jeong (Department of Forest Science, Andong National University)
  • 투고 : 2023.10.16
  • 심사 : 2023.10.30
  • 발행 : 2023.12.01

초록

In the present study, the effects of HML on lipolysis, adipocyte browning, autophagy, and proliferation were investigated. HML affected lipolysis by increasing the protein levels of ATGL and HSL, and phosphorylation levels of HSL and AMPK. Furthermore, HSL decreased the perilipin-1 levels. In addition, free glycerol content was increased by HML treatment. HML affected adipocyte browning by increasing the protein levels of UCP-1, PGC-1α, and PRDM16. In addition, HML affected autophagy by increasing the levels of LC3-I and LC3-II, and decreasing those of SQSTM1/p62. Moreover, HML affected adipocyte proliferation by suppressing the proliferation of 3T3-L1 cells due to arrest of the cell cycle via blocking the expression of β-catenin and cyclin D1. These results suggest that HML induces lipolysis, adipocyte browning, autophagy, and inhibits excessive proliferation of adipocytes.

키워드

과제정보

This work was supported by the R&D Program for Forest Science Technology (Project No. 2021377C10-2123-BD02) provided by the Korea Forest Service (Korea Forestry Promotion Institute) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03024862).

참고문헌

  1. Arner, P. and D. Langin. 2014. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol. Metab. 25:255-262. https://doi.org/10.1016/j.tem.2014.03.002
  2. Baerga, R., Y. Zhang, P.H. Chen, S. Goldman and S. Jin. 2009. Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5:1118-1130. https://doi.org/10.4161/auto.5.8.9991
  3. Cannon, B. and J. Nedergaard. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84(1): 277-359. https://doi.org/10.1152/physrev.00015.2003
  4. Choi, J.W., H.J. Choi, G.H. Ryu, J.W. Lee and J.B. Jeong. 2023. Inhibition of lipid droplet accumulation by Solanum nigrum by suppressing adipogenesis and inducing lipolysis, thermogenesis and autophagy in 3T3-L1 cells. Exp. Ther. Med. 26: 333.
  5. Choi, M.Y., B. Shin, J.H. Yu, J.H. Yeo, J.W. Lee, N.G. Geum, M.Y. An and J.B. Jeong. 2022. Anti-obesity effect of Pinus densiflora leaf extracts. Korean J. Plant Res. 35(2):385-389.
  6. Cohen, P., J.D. Levy, Y. Zhang, A. Frontini, D.P. Kolodin, K.J. Svensson, J.C. Lo, X. Zeng, L. Ye, M.J. Khandekar, J. Wu, S.C. Gunawardana, A.S. Banks, J.P.G. Camporez, M.J. Jurczak, S. Kajimura, D.W. Piston, D. Mathis, S. Cinti, G.I. Shulman, P. Seale and B.M. Spiegelman. 2014. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156(1-2):304-316. https://doi.org/10.1016/j.cell.2013.12.021
  7. Dong, M., J. Lin, W. Lim, W. Jin and H.J. Lee. 2017. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front. Med. 12:130-138. https://doi.org/10.1007/s11684-017-0555-2
  8. Duncan, R.E., M. Ahmadian, K. Jaworski, E. Sarkadi-Nagy and H.S. Sul. 2007. Regulation of lipolysis in adipocytes. Ann. Rev. Nutr. 27:79-101. https://doi.org/10.1146/annurev.nutr.27.061406.093734
  9. Fruhbeck, G., L. Mendez-Gimenez, J.A. Fernandez-Formoso, S. Fernandez and A. Rodriguez. 2014. Regulation of adipocyte lipolysis. Nutr. Res. Rev. 7:63-93. https://doi.org/10.1017/S095442241400002X
  10. Gaidhu, M.P., N.M. Anthony, P. Patel, T.J. Hawke and R.B. Ceddia. 2010. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am. J. Physiol. Cell Physiol. 298:C961-971. https://doi.org/10.1152/ajpcell.00547.2009
  11. Gamboa-Gomez, C.I., N.E. Rocha-Guzman, J.A. Gallegos-Infante, M.R. Moreno-Jimenez, B.D. Vazquez-Cabral and R.F. Gonzalez-Laredo. 2015. Plants with potential use on obesity and its complications. EXCLI J. 14:809-831.
  12. Gao, F., K.I. Zheng, X. Wang, Q. Sun, K. Pan, T. Wang, Y. Chen, G. Targher, C.D. Byrne, J. George and M. Zheng. 2020. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care 43(7):e72-e74. https://doi.org/10.2337/dc20-0682
  13. Geum, N.G., J.H. Yu, J.H. Yeo, M.Y. Choi, J.W. Lee, J.K. Beak and J.B. Jeong. 2021. Immunostimulatory activity and anti-obesity activity of Hibiscus manihot leaves in mouse macrophages, RAW264.7 cells and mouse adipocytes, 3T3-L1 cells. J. Funct. Foods 87:104803.
  14. Glick, D., S. Barth and K.F. Macleod. 2010. Autophagy: cellular and molecular mechanisms. J. Pathol. 221:3-12. https://doi.org/10.1002/path.2697
  15. Holm, C. 2003. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 31:1120-1124. https://doi.org/10.1042/bst0311120
  16. Jahangir, E., A. De Schutter and C.J. Lavie. 2014. The relationship between obesity and coronary artery disease. Transl. Res. 164(4):336-344. https://doi.org/10.1016/j.trsl.2014.03.010
  17. Jansen, H.J., P. van Essen, T. Koenen, L.A. Joosten, M.G. Netea, C.J. Tack and R. Stienstra. 2012. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153:5866-5874. https://doi.org/10.1210/en.2012-1625
  18. Jin, H., K. Lee, S. Chei, H.J. Oh, K.P. Lee and B.Y. Lee. 2020. Ecklonia stolonifera extract suppresses lipid accumulation by promoting lipolysis and adipose browning in high-fat diet-induced obese male mice. Cells 9(4):871.
  19. Kim, J.H., O.K. Kim, H.G. Yoon, J. Park, Y. You, K. Kim, Y.H. Lee, K.C. Choi, J. Lee and W. Jun. 2016. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat dietinduced obese rats. Food Nutr. Res. 60:4731425.
  20. Luan, F., Q. We, Y. Yang, H. Lv, H. Liu, D. Liu, Z. Gan and N. Zeng. 2020. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of Abelmoschus manihot L.: a comprehensive review. Front. Pharmacol. 11: 1068.
  21. Rosen, E.D. and B.M. Spiegelman. 2014. What we talk about when we talk about fat. Cell 156(1-2):20-44. https://doi.org/10.1016/j.cell.2013.12.012
  22. Seo, Y.J., K.J. Kim, J. Choi, E.J. Koh and B.Y. Lee. 2018. Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice. Nutrients 10(6):712.
  23. Smith, A.J., B.R. Thompson, M.A. Sanders and D.A. Bernlohr. 2007. Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: Regulation by fatty acids and phosphorylation. J. Biol. Chem. 282(44):32424-32432. https://doi.org/10.1074/jbc.M703730200
  24. Trayhurn, P. and S.Y. Alomar. 2015. Oxygen deprivation and the cellular response to hypoxia in adipocytes-perspectives on white and brown adipose tissues in obesity. Front. Endocrinol. 6:19.
  25. Vasarri, M., E. Barletta and D. Degl'Innocenti. 2021. Posidonia oceanica (L.) Delile extract reduces lipid accumulation through autophagy activation in HepG2 cells. Pharmaceuticals (Basel). 14(10):969.
  26. Wagner, G., J. Lindroos-Christensen, E. Einwallner, J. Husa, T.C. Zapf, K. Lipp, S. Rauscher, M. Groger, A. Spittler, R. Loewe, F. Gruber, J.C. Duvigneau, T. Mohr, H. SutterlutyFall, F. Klinglmuller, G. Prager, B. Huppertz, J. Yun, O. Wagner, H. Esterbauer and M. Bilban. 2017. HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2. Sci. Rep. 7:40881.
  27. Yin, W., J. Mu and M.J. Birnbaum. 2003. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J. Biol. Chem. 278(44):43074-43080. https://doi.org/10.1074/jbc.M308484200
  28. Yoshizaki, T., C. Kusunoki, M. Kondo, M. Yasuda, S. Kume, K. Morino, O. Sekine, S. Ugi, T. Uzu, Y. Nishio, A. Kashiwagi and H. Maegawa. 2012. Autophagy regulates inflammation in adipocytes. Biochem. Biophys. Res. Commun. 417:352-357. https://doi.org/10.1016/j.bbrc.2011.11.114
  29. Zhang, X.H., Z. Wang, B.G. Kang, S.H. Hwang, J.Y. Lee, S.S. Lim and B. Huang. 2018. Antiobesity effect of Astilbe chinensis Franch. et Savet. extract through regulation of adipogenesis and AMP-activated protein kinase pathways in 3T3-L1 adipocyte and high-fat diet-induced C57BL/6N obese mice. Evid. Based Complement. Alternat. Med. 2018: 1347612.