Research Progress on NF3 Substitute Gas of PECVD Chamber Cleaning Process for Carbon Neutrality

반도체·디스플레이 탄소중립을 위한 PECVD 챔버세정용 NF3대체가스 개발연구

  • Seyun Jo (Department of Semiconductor Engineering, Myongji University) ;
  • Sang Jeen Hong (Department of Semiconductor Engineering, Myongji University)
  • 조세윤 (명지대학교 반도체공학과) ;
  • 홍상진 (명지대학교 반도체공학과)
  • Received : 2023.11.15
  • Accepted : 2023.12.12
  • Published : 2023.12.31

Abstract

Carbon neutrality has been emerged as important mission for all the manufacturing industry to reduce energy usage and carbon emission equivalent. Korean semiconductor and display manufacturing industries are also in huge interest by minimize the energy usage as well as to find a less global warming product gases in both etch and cleaning. In addition, Korean government is also investing long term research and development plan for the safe environment in various ways. In this paper, we revisit previous research activities on carbon emission equivalent and current research activities performed in semiconductor process diagnosis research center at Myongji University with respect to the reduction of NF3 usage for the PECVD chamber cleaning, and we present the analytical result of the exhaust gas with residual gas analysis in both 6 inches and 12 inches PECVD equipment. The presented result can be a reference study of the development of new substitution gas in near future to compare the cleaning rate of the silicon oxide deposition chamber.

Keywords

Acknowledgement

본 연구는 한국산업기술평가관리원 (GID: G01001557532)의 지원을 받아 수행되었으며, RPS 실험을 위한 조언을 주신 뉴파워프라즈마 김성중 팀장과, 화공가스안전을 위해 도움을 주신 솔머티리얼즈의 박현기 연구소장에게 감사드립니다.

References

  1. E. Fortunato, P. Barquinha and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Adv. Mater., vol. 24, no. 22, pp. 2945-2986, 2012. https://doi.org/10.1002/adma.201103228
  2. K. L. Chopra, P. D. Paulson and V. Dutta, "Thin-film solar cells: an overview," Prog. Photovolt. Res. Appl., vol. 12, no. 2-3, pp. 69-92, 2004. https://doi.org/10.1002/pip.541
  3. S. Raoux, D. Cheung, M. Fodor, W. N. Taylor and K. Fairbairn, "Growth, trapping and abatement of dielectric particles in PECVD systems," Plasma Sources Sci. Technol., vol. 6, no. 3, pp. 405, 1997.
  4. J. E. Choi, J. Song, Y. H. Lee and S. J. Hong, "Deep neural network modeling of multiple oxide/nitride deposited dielectric films for 3D-NAND flash," Appl. Sci. Converg. Technol., vol. 29, no. 6, pp. 190-194, 2020. https://doi.org/10.5757/ASCT.2020.29.6.190
  5. K. Yang, S. Park and G. Yeom, "Low global warming potential alternative gases for plasma chamber cleaning," Sci. Adv. Mater., vol. 8, no. 12, pp. 2253-2259, 2016. https://doi.org/10.1166/sam.2016.2885
  6. H. Hsueh, R. T. McGrath, B. Ji, B. S. Felker, J. G. Langan and E. J. Karwacki, "Ion energy distributions and optical emission spectra in NF 3-based process chamber cleaning plasmas," J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom., vol. 19, no. 4, pp. 1346-1357, 2001.
  7. G. Bruno, P. Capezzuto, G. Cicala and P. Manodoro, "Study of the NF3 plasma cleaning of reactors for amorphous silicon deposition," J. Vac. Sci. Technol. A: Vac. Surf. Films, vol. 12, no. 3, pp. 690-698, 1994. https://doi.org/10.1116/1.578854
  8. H. Chae and H. H. Sawin, "Plasma Kinetic Study of Silicon-Dioxide Removal with Fluorocompounds in a Plasma-Enhanced Chemical Vapor Deposition Chamber," J. Kor. Phys. Soc., vol. 51, no. 3, pp. 978-983, 2007. https://doi.org/10.3938/jkps.51.978
  9. B. Ji, J. H. Yang, P. R. Badowski and E. J. Karwacki, "Optimization and Analysis of NF 3 in Situ Chamber Cleaning Plasmas," J. Appl. Phys., vol. 95, no. 8, pp. 4452-4462, 2004. https://doi.org/10.1063/1.1688996
  10. R. Hellriegel, M. Albert, B. Hintze, H. Winzig and J. W. Bartha, "Remote plasma etching of titanium nitride using NF3/argon and chlorine mixtures for chamber clean applications," Microelectron. Eng., vol. 84, no. 1, pp. 37-41, 2007. https://doi.org/10.1016/j.mee.2006.08.002
  11. M. Czerniak, "PFC emission reduction in the semiconductor industry," in Light Metals 2018, pp. 1495-1498.