DOI QR코드

DOI QR Code

함정 유류화재 대응을 위한 수성막포의 유변학적 특성 연구

Research on the Rheological Properties of Aqueous Film Forming Foam to Respond to Ship Oil Fires

  • 전길송 (한국건설기술연구원 화재안전연구소) ;
  • 김휘성 (한국건설기술연구원 화재안전연구소) ;
  • 유정훈 (한국건설기술연구원 화재안전연구소) ;
  • 유용호 (한국건설기술연구원 화재안전연구소) ;
  • 박진욱 (한국건설기술연구원 화재안전연구소)
  • Kil-Song Jeon (Department of Fire Safety Research, KOREA Institute of Civil Engineering and Building Technology) ;
  • Hwi-Seong Kim (Department of Fire Safety Research, KOREA Institute of Civil Engineering and Building Technology) ;
  • Jung-Hoon You (Department of Fire Safety Research, KOREA Institute of Civil Engineering and Building Technology) ;
  • Yong-Ho Yoo (Department of Fire Safety Research, KOREA Institute of Civil Engineering and Building Technology) ;
  • Jin-Ouk Park (Department of Fire Safety Research, KOREA Institute of Civil Engineering and Building Technology)
  • 투고 : 2023.10.24
  • 심사 : 2023.11.08
  • 발행 : 2023.12.10

초록

수성막포(aqueous film forming foam, AFFF)는 함정 유류화재 대응에 핵심적인 역할을 하는 주요 소화약제 중 하나이다. 이 형태의 소화약제는 막 형성, 열 제거, 연소 억제, 그리고 화학 물질 혼합물을 이용하여 화재를 진압하는 데 효과적이다. 이러한 특성은 유류화재 대응에 있어서 큰 장점을 제공하지만, AFFF는 폼 형태로 분사되어 화재에 대응하는 과정에서 기존 유체와 차별점을 가진다. 따라서 AFFF 폼의 레오미터를 활용한 유변학적 특성 분석은 함정 유류화재 대응을 위한 AFFF 분사 특성 예측에 핵심적인 역할을 수행하며, 이는 효과적인 화재 진압과 밀접한 연관이 있다. 본 연구에서는 레오미터 실험을 통해 AFFF 폼의 비뉴턴 유체(전단박화) 거동을 확인하였으며, 폼의 안정성과 직결되는 데이터들을 얻을 수 있었다. 이러한 실험 데이터들은 AFFF를 활용한 소화 시스템의 효율성을 높이는데 기여할 것으로 기대된다.

Aqueous film forming foam (AFFF) is a critical fire suppression agent used in combating hydrocarbon fires. This type of fire suppressant is highly effective due to its ability to form a protective film, dissipate heat, inhibit combustion, and utilize a blend of chemical substances to extinguish fires. While these properties offer significant advantages in responding to hydrocarbon fires, AFFF is distinct in its deployment as it is dispensed in the form of foam. Therefore, the rheological analysis of AFFF foam using a rheometer plays a crucial role in predicting the spray characteristics of AFFF for combating hydrocarbon fires, and this is closely associated with effective fire suppression. In this study, we conducted rheometer experiments to confirm the non-Newtonian behavior (shear-thinning) of AFFF foam and obtained data on the form's stability. These experimental data are expected to contribute to enhancing the efficiency of fire suppression systems utilizing AFFF.

키워드

과제정보

본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다. (협약번호 UM23512RD5)

참고문헌

  1. T. H. Park, T. S. Kim, J. H. Park, Y. J. Hyun, B. C. Lee, T. D. Kim, B. J. Kim, and J. S. Kwon, Experiments on the application of class A and B Fires to derive the optimum air ratio of compressed air foam systems, Fire Sci. Eng., 37, 38-43 (2023).  https://doi.org/10.7731/KIFSE.95785771
  2. J. O. Park, Y. H. Yoo, and W. S. Kim, Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces, J. Korean Tunn. Undergr. Sp. Assoc., 23, 503-516 (2021). 
  3. H. Y. Kim, D. H. Rie, and S. S. Kim, Development of auto mixing system of high expansion foam for optimal expansion performance according to changing temperature, Fire Sci. Eng., 24, 139-144 (2010). 
  4. Y. E. Song, Y. J. Joo, D. G. Shin, K. Y. Cho, and D. J. Lee, Thermal and rheological characterizations of polycarbosilane precursor by solvent treatment, Compos. Res., 35, 23-30 (2022). 
  5. H. Y. Song and K. Hyun, Characterization of polymeric materials with rheological properties, Polym. Sci. Technol., 28, 401-408 (2017). 
  6. I. K. Jang, S. R. Seo, and S. K. Park, Study on anti-washout properties and shear-thickening behaviors of surfactant added cement grouts, Appl. Chem. Eng., 23, 480-484 (2012). 
  7. Y. G. Jung and H. Y. Lee, Effects of temperature on the rheology of lecithin/CaCl2 organogels, Appl. Chem. Eng., 29, 244-247 (2018). 
  8. Y. S. Han, B. L. Choi, M. B. Kim, Y. W. Lee, and S. H. So, Full-scale fire suppression test for application of water mist system in road tunnel, Fire Sci. Eng., 25, 51-56 (2011). 
  9. T. Y. Shin, S. H. Han, and J. H. Kim, Estimation of yield stress and plastic viscosity of concrete using the slump flow test, J. Korea Concr. Inst., 32, 165-171 (2020).  https://doi.org/10.4334/JKCI.2020.32.2.165
  10. E. H. Kwon, E. M. Lee, M. Y. Kim, H. S. Chang, Y. T. Guahk, K. H. Kim, and N. S. Nho, The rheological behaviors and non-newtonian characteristics of maltenes made by SDA method from oil sands bitumen. Appl. Chem. Eng., 25, 209-214 (2014).  https://doi.org/10.14478/ace.2014.1012
  11. G. Kim, J. Fukai, and S. Hironaka, Rheological modeling of nanoparticles in a suspension with shear flow, Appl. Chem. Eng., 30, 445-452 (2019). 
  12. J. B. Ahn and S. T. Noh, The rheology of the silica dispersion system with single and mixed solvent, Appl. Chem. Eng., 20, 685-691 (2009). 
  13. B. Y. Lee, P. Dahal, H. S. Kim, S. Y. Yoo, and Y. C. Kim, A Study on the molecular weight control and rheological properties of branched polycarbonate, Appl. Chem. Eng, 23, 388-393 (2012). 
  14. K. N. Jang, M. R. Lee, B. R. Park, K. J. Yun, and E. S. Baek, An experimental study on a discharge pressure, flow rate and foam discharge concentration through the nozzle according to the foam suction nipple diameter, Fire Sci. Eng., 29, 84-97 (2015). 
  15. Y. H. Yoo, S. H. Park, S. J. Han, and J. O. Park, The study on application of automatic monitor system for initial fire suppression in double-deck tunnel, J. Korean Tunn. Undergr. Sp. Assoc., 18, 419-429 (2016).  https://doi.org/10.9711/KTAJ.2016.18.5.419
  16. D. E. Kim and Y. C. Kim, Study on the physical and rheological properties of Nylon66/MWCNT composites, Appl. Chem. Eng., 24, 214-218 (2013). 
  17. M. G. Kim, E. A. Chu, and H. Y. Lee, Effects of pentanol on the rheology of lecithin/LiCl Oranogel, Appl. Chem. Eng., 32, 679-683 (2021). 
  18. J. S. Choi and B. S. Jin, Changes in rheological properties of o/w emulsions according to the type of nonionic surfactant and emulsion stabilizer, Appl. Chem. Eng., 30, 415-420 (2019). 
  19. H. Ji, H. M. Lim, Y. W. Chang, and H. S. Lee, Comparison of the viscosity of ceramic slurries using a rotational rheometer and a vibrational viscometer, J. Korea Ceram. Soc., 49, 542-548 (2012).  https://doi.org/10.4191/kcers.2012.49.6.542
  20. C. H. Choi, Y. S. Ok, B. K. Kim, C. S. Ha, W. J. Cho, and Y. J. Shin, Melt rheology and property of short aramid fiber reinforced polyethylene composites, Appl. Chem. Eng., 3, 81-87 (1992). 
  21. S. J. Bak, S. W. Song, J. L. Lee, B. G. Min, and J. S. Sin, cure kinetics and rheological properties of epoxy resins containing low toxicity flame retardant, Appl. Chem. Eng., 15, 41-47 (2004). 
  22. E. A. Chu, N. H. Kim, M. S. Kang, Y. M. Lee, and H. Y. Lee, Investigation of rheological properties of lecithin/D-sorbitol/water mixtures, Appl. Chem. Eng., 34, 247-251 (2023). 
  23. S. T. Noh, H. S. Park, B. S. Cho, E. S. Yoo, and J. B. Ahn, Shear thickening behavior of fumed silica suspension in polyethylene Glycol, Appl. Chem. Eng., 22, 384-389 (2011).