DOI QR코드

DOI QR Code

아세트산을 조절인자로 제작한 크롬 기반 금속유기골격체의 diisopropyl methyl phosphonate 흡착 특성 연구

A Study on the Adsorption Properties of Diisopropyl Methyl Phosphonate on Chromium-Based Metal-Organic Frameworks Using Acetic Acid as a Modulator

  • 정상조 (육군사관학교 핵.WMD방호연구센터)
  • Sangjo Jeong (Nuclear & WMD Protection Research Center, Korea Military Academy)
  • 투고 : 2023.09.15
  • 심사 : 2023.11.06
  • 발행 : 2023.12.10

초록

크롬 기반 금속유기골격체(MIL-101(Cr))를 제조하고 이들을 활용한 유사화학작용제 diisopropyl methyl phosphonate(DIMP) 흡착 실험을 통해 방독면 정화통이나 보호의 충진물질로서 활용 가능성을 평가하였다. MIL-101(Cr)은 조절인자로 아세트산(MIL-101(Cr)-A)과 수산화나트륨(MIL-101(Cr)-N)을 활용하여 각각 제작하였는데, 아세트산을 조절인자로 사용하였을 때 보다 넓은 비표면적과 높은 DIMP 흡착량을 보였다. MIL-101(Cr)-A는 상대습도 90% 환경에서 10일 동안 노출 시 흡착제 무게 대비 약 160%의 수분을 흡수하여 활성탄 등 다른 흡착제와 비교할 때 흡수율이 높았다. MIL-101(Cr)-A를 상대습도 90% 환경에서 일정기간 노출한 시료에 대한 DIMP 흡착량 실험 결과 24시간 이후에는 노출되지 않았을 때 흡착량의 약 40% 수준으로 감소하였으나, 이 흡착량은 상용 방독면 정화통 충진 활성탄과 비교하였을 때 여전히 높은 흡착량으로 추후 방독면 정화통이나 보호의 충진물질로서 활용가능성이 높은 것으로 판단된다.

Chromium-based metal-organic frameworks (MIL-101(Cr)) were synthesized, and their potential use as a filling material for gas masks or protective clothing was assessed through adsorption experiments using diisopropyl methyl phosphate (DIMP) as a simulant for chemical warfare agents. MIL-101(Cr) was prepared using acetic acid (MIL-101(Cr)-A) and sodium hydroxide (MIL-101(Cr)-N) as modulators. The use of acetic acid as a modulator resulted in a larger specific surface area and a higher DIMP adsorption capacity. MIL-101(Cr)-A absorbed approximately 160% of its own weight of moisture when exposed to an environment with a relative humidity of 90% for 10 days, surpassing other adsorbents such as activated carbon. The DIMP adsorption capacity of MIL-101(Cr)-A decreased to about 40% of its initial adsorption capacity after 24 hours of exposure to an environment with a relative humidity of 90%. However, this capacity is still higher compared to that of activated carbon used in commercial gas masks, suggesting a high potential for future use as a filling material for gas masks or protective clothing.

키워드

과제정보

본 논문은 육군사관학교 핵·WMD 방호연구센터 2023년도(23-핵 WMD-연구소-01) 연구활동비 지원을 받아 연구되었습니다.

참고문헌

  1. J. B. DeCoste and G. W. Peterson, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727 (2014).  https://doi.org/10.1021/cr4006473
  2. Ministry of Public Administration and Security, 2021 Disaster Yearbook (2022). 
  3. H. Wang, C. Wang, H. Yan, H. Yi, and J. Lu, Precisely controlled synthesis of Au@ Pd core shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol, J. Catal., 324, 59-68 (2015).  https://doi.org/10.1016/j.jcat.2015.01.019
  4. P. W. Seo, J. Y. Song, and S. H Jhung, Adsorptive removal of hazardous organics from water with metal-organic frameworks, Appl. Chem. Eng., 27, 358-365 (2016).  https://doi.org/10.14478/ace.2016.1048
  5. A. M. Plonka, Q. Wang, W. O. Gordon, A. Balboa, D. Troya, W. Guo, C. H. Sharp, S. D. Senanayake, J. R. Morris, C. L. Hill, and A. I. Frenkel, In situ probes of capture and decomposition of chemical warfare agent simulants by Zr-based metal organic frameworks, J. Am. Chem. Soc., 139, 599-602 (2017).  https://doi.org/10.1021/jacs.6b11373
  6. J. P. Ruffley, I. Goodenough, T. Y. Luo, M. Richard, E. Borguet, N. L. Rosi, and J. K. Johnson, Design, synthesis, and characterization of metal-organic frameworks for enhanced sorption of chemical warfare agent simulants, J. Phys. Chem. C, 123, 19748-19758 (2019).  https://doi.org/10.1021/acs.jpcc.9b05574
  7. N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, and R. Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev., 46, 3357-3385 (2017).  https://doi.org/10.1039/C7CS00108H
  8. A. Buragohain, S. Couck, P. Van Der Voort, J. F. M. Denayer, and S. Biswas, Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=-F, -Cl, -Br, -CH3, -C6H4, - F2, -(CH3)2) materials, J. Solid State. Chem., 238, 195-202 (2016).  https://doi.org/10.1016/j.jssc.2016.03.034
  9. M. Lalehchini, M. M. Alavi Nikje, A. Mohajeri, and H. Kazemian, A green, economic method for bench-scale activation of a MIL-101(Cr) nanoadsorbent, Ind. Eng. Chem. Res., 62, 598-609 (2023).  https://doi.org/10.1021/acs.iecr.2c03028
  10. E. Niknam, F. Panahi, F. Daneshgar, F. Bahrami, and A. Khalafi-Nezhad, Metal-organic framework MIL-101(Cr) as an efficient heterogeneous catalyst for clean synthesis of benzoazoles, ACS Omega, 3, 17135-17144 (2018). 
  11. T. Hu, H. Lv, S. Shan, Q. Jia, H. Su, N. Tian, and S. He, Porous structured MIL-101 synthesized with different mineralizers for adsorptive removal of oxytetracycline from aqueous solution, RSC Adv., 6, 73741-73747 (2016). 
  12. T. Zhao, F. Jeremias, I. Boldog, B. Nguyen, S. K. Henninger, and C. Janiak, High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr), Dalton Trans., 44, 16791-16801 (2015).  https://doi.org/10.1039/C5DT02625C
  13. R. Mesgarian, A. Rashidi, A. Heydarinasab, and Y. Zamani, High performance MIL-101 nanoadsorbent for the natural gas dehydration, J. Nanostructures, 12, 983-998 (2022). 
  14. T. Zhao, W. Geng, M. Dong, Y. Zhao, C. Janiak, L. Shen, J. Ying and X. Y. Yang, The enhanced dyes removal and catalytic property for nanofused structural chromium-benzenedicarboxylate metalorganic framework, Chem. Phys. Lett., 803, 139859 (2022). 
  15. T. Zhao, S. H. Li, L. Shen, Y. Wang, and X. Y. Yang, The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property, Inorg. Chem. Commun., 96, 47-51 (2018).  https://doi.org/10.1016/j.inoche.2018.07.036
  16. T. Zhao, S. Li, Y. Xiao, C. Janiak, G. Chang, G. Tian, and X. Y. Yang, Template-free synthesis to micro-meso-macroporous hierarchy in nanostructured MIL-101(Cr) with enhanced catalytic activity, Sci. China Mater., 64, 252-258 (2021).  https://doi.org/10.1007/s40843-020-1435-3
  17. B. Liu, S. A. Younis, and K. H. Kim, The dynamic competition in adsorption between gaseous benzene and moisture on metal-organic frameworks across their varying concentration levels, Chem. Eng. J., 421, 127813 (2021). 
  18. Y. Zhang, Z. Zhu, W. N. Wang, and S. C. Chen, Mitigating the relative humidity effects on the simultaneous removal of VOCs and PM2.5 of a metal-organic framework coated electret filter, Sep. Purif. Technol., 285, 120309 (2022). 
  19. W. Jang and S. Jeong, Improving the DIMP sorption capacity durability of zirconium based metal-organic frameworks coated with polydimethylsiloxane at high humidity, Appl. Chem. Eng., 33, 296-301 (2022). 
  20. D. Yin, C. Li, H. Ren, O. Shekhah, J. Liu, and C. Liang, Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity, RSC Adv., 7, 1626-1633 (2017).  https://doi.org/10.1039/C6RA25722D
  21. S. A. El-Hakam, S. E. Samra, S. M. El-Dafrawy, A. A. Ibrahim, R. S. Salama, and A. I. Ahmed, Synthesis of sulfamic acid supported on Cr-MIL-101 as a heterogeneous acid catalyst and efficient adsorbent for methyl orange dye, RSC Adv., 8, 20517-20533 (2018).  https://doi.org/10.1039/C8RA02941E
  22. Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, and Y. He, Adsorption of carbon dioxide by MIL-101(Cr): Regeneration conditions and influence of flue gas contaminants, Sci. Rep., 3, 2916 (2013). 
  23. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051-1069 (2015).  https://doi.org/10.1515/pac-2014-1117
  24. G. Han, Q. Qian, K. Mizrahi Rodriguez and Z. P. Smith, Hydrothermal synthesis of sub-20 nm amine-functionalized MIL-101(Cr) nanoparticles with high surface area and enhanced CO2 uptake, Ind. Eng. Chem. Res., 59, 7888-7900 (2020).  https://doi.org/10.1021/acs.iecr.0c00535
  25. H. Zhao, Q. Li, Z. Wang, T. Wu, and M. Zhang, Synthesis of MIL-101(Cr) and its water adsorption performance, Microporous Mesoporous Mater., 297, 110044 (2020).