References
- A. Cox, K. Klein, T. Charman, G. Baird, S. Baron-Cohen, J. Swettenham, A. Drew, and S. Wheelwright, Autism spectrum disorders at 20 and 42 months of age: Stability of clinical and ADI-R diagnosis, J. Child Psychol. Psychiatry 40 (1999), no. 5, 719-732. https://doi.org/10.1111/1469-7610.00488
- A. Kleinsmith and N. Bianchi-Berthouze, Affective body expression perception and recognition: A survey, IEEE Trans. Affect. Comput. 4 (2012), no. 1, 15-33. https://doi.org/10.1109/T-AFFC.2012.16
- M. Boutrus, S. Z. Gilani, G. A. Alvares, M. T. Maybery, D. W. Tan, A. Mian, and A. J. O. Whitehouse, Increased facial asymmetry in autism spectrum conditions is associated with symptom presentation, Autism. Research 12 (2019), no. 12, 1774-1783. https://doi.org/10.1002/aur.2161
- S. Russell and P. Norvig, Artificial intelligence: A modern approach, 3rd ed., Prentice Hall Press, USA, 2009.
- C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
- M. Feurer and F. Hutter, Hyperparameter optimization, Automated machine learning, Springer, Cham, 2019, pp. 3-33.
- M. Blohm, M. Hanussek, and M. Kintz, Leveraging automated machine learning for text classification: Evaluation of AutoML tools and comparison with human performance, 2020. arXiv preprint arXiv:2012.03575.
- J. Dafflon, W. H. L. Pinaya, F. Turkheimer, J. H. Cole, R. Leech, M. A. Harris, S. R. Cox, H. C. Whalley, A. M. McIntosh, and P. J. Hellyer, An automated machine learning approach to predict brain age from cortical anatomical measures, Hum. Brain Mapp. 41 (2020), no. 13, 3555-3566. https://doi.org/10.1002/hbm.25028
- T. Han, F. N. B. Gois, R. Oliveira, L. R. Prates, and M. M. De Almeida Porto, Modeling the progression of COVID-19 deaths using Kalman Filter and AutoML, Soft. Comput. 1 (2021), 1-16.
- J. M. Rehg, Behavior imaging: Using computer vision to study autism, in Proc. IAPR Conf. Machine. Vision Appicat. (Nara, Japan) June 2011, pp. 14-21.
- S. Rajagopalan, A. Dhall, and R. Goecke, Self-stimulatory behaviours in the wild for autism diagnosis, in Proc. IEEE Int. Conf. Comput. Vision Workshops (Sydney, Australia), Dec. 2013, pp. 755-761.
- S. S. Rajagopalan, Computational behaviour modelling for autism diagnosis, in Proc. ACM Int. Conf. Multimodal Interaction (Sydney Australia), Dec. 2013, pp. 361-364.
- J. Rehg, G. Abowd, A. Rozga, M. Romero, M. Clements, S. Sclaroff, I. Essa, O. Ousley, Y. Li, and C. Kim, Decoding children's social behavior, in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (Portland, OR, USA), June 2013, pp. 3414-3421.
- M. Leo, P. Carcagni, C. Distante, P. L. Mazzeo, P. Spagnolo, A. Levante, S. Petrocchi, and F. Lecciso, Computational analysis of deep visual data for quantifying facial expression production, Appl. Sci. 9 (2019), no. 21, 4542. https://doi.org/10.3390/app9214542
- M. D. Samad, N. Diawara, J. L. Bobzien, J. W. Harrington, M. A. Witherow, and K. M. Iftekharuddin, A feasibility study of autism behavioral markers in spontaneous facial, visual, and hand movement response data, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (2017), no. 2, 353-361. https://doi.org/10.1109/tnsre.2017.2768482
- P. Mazumdar, G. Arru, and F. Battisti, Early detection of children with autism spectrum disorder based on visual exploration of images, Signal Process. Image Commun. 94 (2021), 116184. https://doi.org/10.1016/j.image.2021.116184
- M. Leo, P. Carcagni, P. L. Mazzeo, P. Spagnolo, D. Cazzato, and C. Distante, Analysis of facial information for healthcare applications: A survey on computer vision-based approaches, Information 11 (2020), no. 3. https://doi.org/10.3390/info11030128
- W. Liu, M. Li, and L. Yi, Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework, Autism Res. 9 (2016), no. 8, 888-898. https://doi.org/10.1002/aur.1615
- V. S. P. Patnam, F. T. George, K. George, and A. Verma, Deep learning based recognition of meltdown in autistic kids, in Proc. IEEE Int. Conf. Healthcare Inform. (Park City, UT, USA), Aug. 2017, pp. 391-396.
- O. Rudovic, Y. Utsumi, J. Lee, J. Hernandez, E. C. Ferrer, B. Schuller, and R. W. Picard, Culturenet: A deep learning approach for engagement intensity estimation from face images of children with autism, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Madrid, Spain), Oct. 2018, pp. 339-346.
- F. C. Tamilarasi, and J. Shanmugam, Convolutional neural network based autism classification, in Proc. Int. Conf. Commun. Electron. Syst. (Coimbatore, India), June 2020, pp. 1208-1212.
- M. Beary, A. Hadsell, R. Messersmith, and M.-P. Hosseini, Diagnosis of autism in children using facial analysis and deep learning, 2020. arXiv preprint arXiv:2008.02890.
- S. Jahanara and S. Padmanabhan, Detecting autism from facial image, 2021.
- Gerry PIOSENKA, Autistic children data set | Kaggle, 2020.
- E. Bisong, Google Colaboratory, Building machine learning and deep learning models on Google Cloud Platform: A comprehensive guide for beginners, Apress, Berkeley, CA, 2019, pp. 59-64.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), 2825-2830.
- G. Bradski, The OpenCV library, Dr. Dobb's J Softw Tools (2000).
- Francois. Chollet, and other, Keras, 2015. https://github.com/fchollet/keras
- J. Bergstra, D. Yamins, and D. D. Cox, Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms, in Proc. Python Sci. Conf. (Austin, TX, USA), 2013, pp. 13-19.
- B. Komer, J. Bergstra, and C. Eliasmith, Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn, in Proc. Python Sci. conf., 2014, pp. 32-37.
- R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, Evaluation of a tree-based pipeline optimization tool for automating data science, in Proc. Genetic Evolutionary Computat. Conf. (Denver, CO, USA), July 2016, pp. 485-492.
- F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagne, DEAP: Evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012), no. 1, 2171-2175.