Acknowledgement
The authors would like to acknowledge the Gen-Z consortium and HPE for their technical assistance in the preparation of this study. This work was supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (no. 2018-0-00503, Researches on next-generation memory-centric computing system architecture).
References
- D. Reinsel, J. Gantz, and J. Rydning, Data age 2025: The evolution of data to life-critical don't focus on big data; focus on the data that's big, IDC, Apr. 2017.
- P. Chaudhary, Data centric computing, in Proc. SPXXL/-SCICOMP Summer 2011, (Edinburgh, Scotland), May 2009.
- A. Boroumand et al., Google workloads for consumer devices: Mitigating data movement bottlenecks, in Proc. Int. Conf. Archit. Support Programm. Lang. Oper. Syst. (ASPLOS) (Williamsburg, VA, USA), Mar. 2018, pp. 316-331.
- O. Mutlu, Memory-centric computing in the big data era, FMS Special Session Invited Talk, ETH Zurich, Aug. 8, 2019.
- R. Balasubramonian et al., Near-data processing: Insights from a micro-46 workshop, IEEE Micro 34 (2014), no. 4, 36-42. https://doi.org/10.1109/mm.2014.55
- Y. Park, IBM data centric systems & OpenPOWER, HPC User Forum, May 6, 2017.
- H. Kwonet al., Signal integrity analysis of system interconnection module of high-density server supporting serial RapidIO, ETRI J. 41 (2019), no. 5, 670-683. https://doi.org/10.4218/etrij.2018-0021
- H. Kim, C. G. Lyuh, and Y. Kwon, Automated optimization for memory-efficient high-performance deep neural network accelerators, ETRI J. 42 (2020), no. 4, 505-517. https://doi.org/10.4218/etrij.2020-0125
- K. Keeton, The machine: An architecture for memory-centric computing, in Proc. Workshop Runtim Oper. Syst. Supercomput. (ROSS), (Portland, OR, USA), June 2015.
- I. Calciu et al., Project pberry: FPGA acceleration for remote memory, in Proc. Workshop Hot Top. Oper. Syst. (Bertinoro, Italy), May 2019.
- Gen-Z Specifications, The Gen-Z Consortium, Available from: https://genzconsortium.org/ [retrieved Oct. 2020].
- CCIX Specifications, CCXI Consortium, Available from: https://www.ccixconsortium.com/ [retrieved Aug. 2020].
- OpenCAPI Specifications, OpenCAPI Consortium, Available from: https://opencapi.org/ [retrieved June 2020].
- CXL Consortium. Available from: https://www.computeexpresslink.org/ [retrieved Aug. 2020].
- S. Hong, W. Kwon, and M. H. Oh, Hardware implementation and analysis of Gen-Z protocol for memory-centric architecture, IEEE Access 8 (2020), 127244-127253. https://doi.org/10.1109/access.2020.3008227
- PMDK, Persistent memory programming, Available from: https://pmem.io/pmdk/ [retrieved Aug. 2020].
- Gen-Z core specification, ver.1.0, 2018.
- P. Knebel et al., Gen-Z chipsetfor exascale fabrics, in Proc. IEEE Hot chips 31 Symp. (Cupertino, CA, USA), Aug. 2019.
- IntelliProp Gen-Z IP core, IntelliProp. Available from: https://www.intelliprop.com/ [retrieved Aug. 2020].
- Gen-Z Memory Module (ZMM) Smart Modular Technology, Available from: https://www.smartm.com/ [retrieved Aug. 2019].
- T. Morgan, Gen-Z Memory Servers Loom on the Horizon, The Next Platform, Jan. 9, 2020, Available from: https://www.nextplatform.com/2020/01/09/gen-z-memory-servers-loom-on-the-horizon/
- XUPP3R, Xilinx UltraScale+ 3/4-length PCIe board User Guide, BittWare, Sept. 2019.
- Using the Memmap kernel option, persistent memory documentation, Available from: https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/linux-environments/linux-memmap [retrieved Aug. 2020].
- NVMe "disk" bandwidth and latency for batched block requests, Available from: https://panthema.net/2019/0322-nvme-batched-block-access-speed/ [retrieved Mar. 2019].
- J. Izraelevitz et al., Basic performance measurements of the intel optane DC persistent memory module, arXiv preprint, CoRR, 2019, arXiv: 1903.05714.