DOI QR코드

DOI QR Code

Technology Trends of Fault-tolerant Quantum Computing

결함허용 양자컴퓨팅 시스템 기술 연구개발 동향

  • Published : 2022.04.01

Abstract

Similar to present computers, quantum computers comprise quantum bits (qubits) and an operating system. However, because the quantum states are fragile, we need to correct quantum errors using entangled physical qubits with quantum error correction (QEC) codes. The combination of entangled physical qubits with a QEC protocol and its computational model are called a logical qubit and fault-tolerant quantum computation, respectively. Thus, QEC is the heart of fault-tolerant quantum computing and overcomes the limitations of noisy intermediate-scale quantum computing. Therefore, in this study, we briefly survey the status of QEC codes and the physical implementation of logical qubit over various qubit technologies. In summary, we emphasize 1) the error threshold value of a quantum system depends on the configurations and 2) therefore, we cannot set only any specific theoretical and/or physical experiment suggestion.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[2019-0-00003, 결함 허용 양자컴퓨팅 시스템 프로그래밍, 구동, 검증 및 구현을 위한 요소기술 개발].

References

  1. A. Steane, "Introduction to quantum error correction," Phil. Trans. R. Soc. A., vol. 356, 1998, pp. 1739-1758. https://doi.org/10.1098/rsta.1998.0246
  2. J. Preskill, "Fault-tolerant quantum computation," in Introduction to Quantum Computation and Information, World Scientific Publishing, Singapore, Singapore, 1998, pp. 213-269.
  3. N.J. Ross and P. Selinger, "Optimal ancilla-free Clifford+T approximation of z-rotation," Quantum Inform. Comput., vol. 16, no. 11-12, 2016, pp. 901-953. https://doi.org/10.26421/QIC16.11-12-1
  4. V. Kliuchnikov et al., "Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates," Quantum Inform. Comput., vol. 13, no. 7-8, 2013, pp. 607-630. https://doi.org/10.26421/QIC13.7-8-4
  5. T. Jochym-O'Connor et al., "Disjointness of stabilizer codes and limitations on fault-tolerant logical gates," 용어해설 Phys. Rev. X, vol. 8, no. 2, 2018, article no. 21047.
  6. P. Aliferis et al., "Quantum accuracy threshold for concatenated distance-3 codes," Quantum Inform. Comput., vol. 6, no. 2, 2006, pp. 97-165. https://doi.org/10.26421/QIC6.2-1
  7. P.W. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A, vol. 52, no. 4, 1995, article no. R2493. https://doi.org/10.1103/PhysRevA.52.2693
  8. A. Steane, "Multiple-particle inteference and quantum error correction," Proc. R. Soc. Lond. A, vol. 452, no. 1954, 1996, pp. 2551-2577. https://doi.org/10.1098/rspa.1996.0136
  9. D.A. Lidar and T.A. Brun, Quantum Error Correction, Cambridge University Press, Cambridge, England, 2013.
  10. A.Y. Kitaev, "Fault-tolerant quantum computation by anyons," Ann. Phys., vol. 303, no. 1, 2003, pp. 2-30. https://doi.org/10.1016/S0003-4916(02)00018-0
  11. R. Raussendorf and J. Harrington, "Fault-tolerant quantum computation with high threshold in two dimensions," Phys. Rev. Lett., vol. 98, no. 9, 2007, article no. 190504.
  12. H. Bombin and M.A. Martin-Delgado, "Topological quantum distillation," Phys. Rev. Lett., vol. 97, no. 18, 2006, article no. 180501.
  13. D.G. Cory e t al., "Experimental quantum error correction," Phys. Rev. Lett., vol. 81, no. 10, 1998, pp. 2152-2155. https://doi.org/10.1103/PhysRevLett.81.2152
  14. E. Knill et al., "Benchmarking quantum computers: The five-qubit error correcting code," Phys. Rev. Lett., vol. 86, no. 25, 2001, pp. 5811-5814. https://doi.org/10.1103/physrevlett.86.5811
  15. P. Schindler et al., "Experimental repetitive quantum error correction," Science, vol. 332, no. 6033, 2011, pp. 1059-1061. https://doi.org/10.1126/science.1203329
  16. L. Egan et al., "Fault-tolerant control of an error-corrected qubit," Nature, vol. 598, 2021, pp. 281-286. https://doi.org/10.1038/s41586-021-03928-y
  17. M.D. Reed et al., "Realization of three-qubit quantum error correction with superconducting circuits," Nature, vol. 482, 2021, pp. 382-385. https://doi.org/10.1038/nature10786
  18. J. Kelly et al., "State preservation by repetitive error detection in a superconducting quantum circuit," Nature, vol. 519, 2015, pp. 66-69. https://doi.org/10.1038/nature14270
  19. G.Q. AI, "Exponential suppression of bit or phase errors with cyclic error correction," Nature, vol. 595, 2021, pp. 383-387. https://doi.org/10.1038/s41586-021-03588-y
  20. K. Takeda et al., "Quantum error correction with silicon spin qubits," arXiv preprint, CoRR, 2022, arXiv: 2201.08581.
  21. X. Xue et al., "Quantum logic with spin qubits crossing the surface code threshold," Nature, vol. 601, 2022, pp. 343-347. https://doi.org/10.1038/s41586-021-04273-w
  22. A.D. Corcoles et al., "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits," Nat. Commun., vol. 6, 2015, article no. 6979.
  23. K. Brown, J. Kim, and C. Monroe, "Co-designing a scalable quantum computer with trapped atomic ions," NPJ Quantum Inf., vol. 2, 2016, article no. 16034.
  24. F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, 2019, pp. 505-510. https://doi.org/10.1038/s41586-019-1666-5
  25. M. McEwen et al., "Removing leakage-induced correlated errors in superconducting quantum error correction," Nat. Commun., vol. 12, 2021, article no. 1761.
  26. C. Ryan-Anderson et al., "Realization of real-time fault-tolerant quantum error correction," Phys. Rev. X, vol. 11, 2021, article no. 041058.
  27. W. Huang et al., "Fidelity benchmarks for two-qubit gates in silicon," Nature, vol. 569, 2019, pp. 532-536. https://doi.org/10.1038/s41586-019-1197-0
  28. A. Noiri et al., "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," arXiv preprint, CoRR, 2022, arXiv: 202.01357 [quant-ph].
  29. C. Baek et al., "Density matrix simulation of quantum error correction codes for near-term quantum devices," Quantum Sci. Technol., vol. 5, 2020, article no. 015002.