과제정보
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (2021-0-00972, Development of Intelligent Wireless Access Technologies)
참고문헌
- ETRI, [5G insight white paper 2.0] 5G technologies and its wayforward, 2017.
- ETRI, 6G insight: Vision and technologies, 2020.
- R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang, Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G, IEEE Wirel. Commun. 27 (2020), no. 2, 212-217. https://doi.org/10.1109/mwc.001.1900323
- Qualcomm, New SI: Study on artificial intelligence (AI)/Machine Learning (ML) for NR air interface, RP-213599. 3GPP, 2021.
- H. Ye, G. Y. Li, and B. H. Juang, Power of deep learning for channel estimation and signal detection in OFDM systems, IEEE Wirel. Commun. Lett. 7 (2018), no. 1, 114-117. https://doi.org/10.1109/lwc.2017.2757490
- M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, Deep learning-based channel estimation, IEEE Commun. Lett. 23 (2019), no. 4, 652-655. https://doi.org/10.1109/lcomm.2019.2898944
- C. Dong, C. C. Loy, K. He, and X. Tang, Image super-resolution using deep convolutional networks, IEEE Trans Pattern Anal Machine Intell 38 (2016), no. 2, 295-307. https://doi.org/10.1109/TPAMI.2015.2439281
- K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process. 26 (2017), no. 7, 3142-3155. https://doi.org/10.1109/TIP.2017.2662206
- L. Li, H. Chen, H.-H. Chang, and L. Liu, Deep residual learning meets OFDM channel estimation, IEEE Wirel. Commun. Lett. 9 (2020), no. 5, 615-618. https://doi.org/10.1109/lwc.2019.2962796
- K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition), 2016, pp. 770-778.
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Networks, arXive preprint, 2014. https://doi.org/10.48550/arXiv.1406.2661
- E. Balevi and J. G. Andrews, Wideband channel estimation with a generative adversarial network, IEEE Trans Wirel Commun 20 (2021), no. 5, 3049-3060. https://doi.org/10.1109/TWC.2020.3047100
- A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, (International Conference on Learning Representations), 2016. https://doi.org/10.48550/arXiv.1511.06434
- S. Zhao, Y. Fang, and L. Qiu, Deep learning-based channel estimation with SRGAN in OFDM systems, (IEEE Wireless Communications and Networking Conference, Nanjing, China), 2021. https://doi.org/10.1109/WCNC49053.2021.9417242
- C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, Photo-realistic single image super-resolution using a generative adversarial network, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA), 2017, pp. 4681-4690.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, Adv. Neural Inform. Process. Syst. 30 (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, BERT: Pretraining of deep bidirectional transformers for language understanding, (Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies), 2019, pp. 4171-4186.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, An image is worth 1616 words: Transformers for image recognition at scale, arXive preprint ICLR, 2021. https://doi.org/10.48550/arXiv.2010.11929
- A. Yang, P. Sun, T. Rakesh, B. Sun, and F. Qin, Deep learning based OFDM channel estimation using frequency-time division and attention mechanism, (IEEE GLOBECOM Workshops, Madrid, Spain), 2021. https://doi.org/10.1109/GCWkshps52748.2021.9682149
- J. Li and Q. Peng, Lightweight channel estimation networks for OFDM systems, IEEE Wirel. Commun. Lett. 11 (2022), no. 10, 2066-2070. https://doi.org/10.1109/LWC.2022.3193199
- Z. Chen, F. Gu, and R. Jiang, Channel estimation method based on transformer in high dynamic environment, (12th International Conference on Wireless Communications and Signal Processing, Nanjing, China), 2020, pp. 817-822.
- D. Luan and J. Thompson, Attention based neural networks for wireless channel estimation, arXive preprint, 2022. https://doi.org/10.48550/arXiv.2204.13465
- K. C. Hung and D. W. Lin, Pilot-based LMMSE channel estimation for OFDM systems with powerdelay profile approximation, IEEE Trans. Vehic. Technol. 59 (2010), no. 1, 150-159. https://doi.org/10.1109/TVT.2009.2029862
- Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM wireless communications with MATLAB(R), Wiley-IEEE Press 2010.
- 3GPP NR specification. http://www.3gpp.org/dynareport/38-series.htm
- X. Chen, S. Xie, and K. He, An empirical study of training selfsupervised vision transformers, (Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada), 2021, pp. 9640-9649.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, (Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada), 2021, pp. 10012-10022.
- 3rd generation partnership project; Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100 GHz (Release 17), 2022.
- J.-I. Kim, J.-H. Jang, and H.-J. Choi, A low-complexity 2-D MMSE channel estimation for OFDM systems, J. Korea Inform. Commun. Soc. 36 (2011), no. 5C, 317-325.