DOI QR코드

DOI QR Code

재귀적 수치 계산법을 이용한 등가 렌즈의 곡률 계산

Curvature Radius of Equivalent Lens Obtained by Recursive Numerical Solving of Gaussian Equations

  • 이규행 (수원대학교 공과대학 전자재료학부 전자물리학과)
  • 투고 : 2022.10.05
  • 심사 : 2022.11.06
  • 발행 : 2022.12.25

초록

광학설계 과정의 첫 단계에서 근축 광선이 만족하는 Gauss 방정식에 대한 해를 구할 수 있는 재귀적 수치 계산법을 도출하였다. 설계 사양으로 렌즈 모듈의 굴절력, 렌즈 제1 주요면으로의 입사각과 제2 주요면으로부터의 출사각이 주어지면 렌즈의 주요면 사이의 거리를 선택한 후, 재귀적 수치 계산법을 적용하여 렌즈의 두께, 렌즈 앞면의 곡률 반경과 뒷면의 곡률 반경을 구할 수 있다. 즉, 설계 사양을 만족하는 두께가 다른 여러 등가렌즈를 얻을 수 있다. 모듈이 2개 이상의 렌즈로 구성되는 경우에도 렌즈의 개수를 하나씩 증가하면서 렌즈의 주요면 사이의 거리를 설계 사양에 맞추어 선택한 후 각 렌즈의 두께와 곡률 반경을 결정할 수 있다.

As a first step in the optical design process, we derive a recursive numerical calculation method that can give a solution to the Gaussian equation that the paraxial rays satisfy. Given the refractive power, the angle of incidence to the first principal plane of the lens, the angle of exit to the second principal plane of the lens, and the distance between the principal planes, the radii of curvature of the front and back surfaces of a lens can be obtained by applying the recursive numerical calculation method proposed in this paper according to the thickness of the lens. If a module consists of two or more lenses, the thickness and radius of curvature of each lens can be similarly determined after selecting the distance between the principal planes of the lens under the condition of the design specification while increasing the number of lenses one by one.

키워드

과제정보

2021 학년도 수원대학교 학술진흥연구비 지원.

참고문헌

  1. P. Mouroulis and J. Macdonald, Geometrical Optics and Optical Design, (Oxford University Press, UK, 1997), Chapter 10.
  2. D. K. Lee, N. J. Yoo, J. H. Jo, J. M. Ryu, H. J. Lee, and G. M. Kang, "General numerical calculation method for paraxial zoom loci of zoom lenses with finite object distance by using gaussian bracket method," Korean J. Opt. Photonics 20, 156-165 (2009). https://doi.org/10.3807/HKH.2009.20.3.156
  3. S. C. Park and Y. S. Kim, "Optical system design using lens modules I: optimum first order design in zoom lens," Korean J. Opt. Photonics 8, 81-87 (1997).
  4. N. J. Yoo, W. S. Kim, J. H. Jo, J. M. Ryu, H. J. Lee, and G. M. Kang, "Numerical calculation method for paraxial zoom loci of complicated zoom lenses with infinite object distance by using Gaussian bracket method," Korean J. Opt. Photonics 18, 410-420 (2007). https://doi.org/10.3807/HKH.2007.18.6.410
  5. J. H. Jo, D. K. Lee, S. O. Lee, J. M. Ryu, G. M. Kang, and H. J. Lee, "Numerical calculation for autofocus of zoom lenses by using Gaussian brackets," Korean J. Opt. Photonics 20, 166-177 (2009). https://doi.org/10.3807/HKH.2009.20.3.166
  6. H. S. Park and J. H. Jo, "Design and performance of a catadioptric omnidirectional zoom optical system using a hybrid lens for visible light," Korean J. Opt. Photonics 31, 96-104 (2020). https://doi.org/10.3807/KJOP.2020.31.2.096
  7. J. U. Lee and K. S. Kim, "Generalization of equivalent lens conversion and third order aberration formulae of the generalized equivalent lens system," Korean J. Opt. Photonics 7, 305-313 (1996).
  8. J. U. Lee and S. C. Park, "Generalized lens group conversion to their equivalent lenses," Korean J. Opt. Photonics 9, 251-257 (1998).
  9. J. U. Lee, "A study for an analytic conversion between equivalent lenses," Korean J. Opt. Photonics 23, 17-22 (2012). https://doi.org/10.3807/KJOP.2012.23.1.017
  10. Y. S. Chun, H. S. Kim, J. U. Lee, and S. C. Park, "Optical design of cemented doublets by using equivalent lens system," Korean J. Opt. Photonics 9, 282-290 (1998).
  11. S. S. Lee, Geometrical Optics (Kyo Hak Sa, Seoul, Korea, 1985).
  12. W. T. Welford, Aberrations of Optical Systems, 1st ed. (CRC Press, USA, 1986).