DOI QR코드

DOI QR Code

Development of Multi-channel Fiber Laser and Beam Alignment Method

다채널 광섬유 레이저 및 다중 빔 정렬 기술 개발

  • Kim, Youngchan (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Ryu, Daegeon (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Noh, Young-Chul (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
  • 김영찬 (광주과학기술원 고등광기술연구소) ;
  • 류대건 (광주과학기술원 고등광기술연구소) ;
  • 노영철 (광주과학기술원 고등광기술연구소)
  • Received : 2022.11.18
  • Accepted : 2022.11.29
  • Published : 2022.12.25

Abstract

We have developed a multi-channel fiber laser for tiled laser beam combining and a laser output array system for multi-beam alignment. The fiber laser is a master oscillator power amplifier configuration that has a common seed, a preamplifier, and a 7-channel amplifier. The output power of each channel is more than 10 W. The laser output array system is a packed cylindrical configuration for a high fill-factor, and it has capabilities for collimation and tilt control with built-in PZT. Multi-beam alignment to a target is successfully implemented using PZT controlled with a stochastic parallel gradient descent (SPGD) algorithm.

타일형 결맞음 빔결합 연구를 위하여 시드 공유형 다채널 광섬유 레이저 및 출력단, 다중 빔 정렬 기술을 개발하였다. 광섬유 레이저는 7개의 채널을 갖고, 각각의 채널당 출력 10 W 이상으로 시드, 전치 증폭기, 광 분배기, 주 증폭기로 구성된 master oscillator power amplifier 구조이다. 레이저 빔 시준 및 정렬을 위하여 틸팅 기능이 가능한 출력단을 개발하였다. 출력단은 채움값을 높이기 위하여 원통형 구조로 제작하였으며, 광섬유 엔드캡의 결합이 가능하게 하였고, 출력단 내부에 PZT를 장착하여 틸팅 기능을 구현하였다. 다중 채널 레이저의 각 채널 빔을 표적의 한 점으로 정렬하기 위하여 stochastic parallel gradient decent (SPGD) 알고리즘을 적용하였다. SPGD 알고리즘을 이용한 PZT 제어를 통해 다중 빔 정렬을 성공적으로 구현하였다. 다중 빔 정렬 기술을 이용한 결맞음 빔결합 기술 개발이 기대된다.

Keywords

Acknowledgement

국방과학연구소 특화연구실 사업(UD2100 19ID).

References

  1. R. A. Motes, Introduction to High Power Fiber Lasers (Directed Energy Professional Society, NM, USA, 2009).
  2. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0
  3. H. Jeong, K. H. Lee, J. Lee, D.-J. Kim, J. H. Lee, and M. Jo, "High-beam-quality 2-kW-class spectrally combined laser using narrow-linewidth ytterbium-doped polarization-maintaining fiber amplifiers," Korean J. Opt. Photonics 31, 218-222 (2020). https://doi.org/10.3807/KJOP.2020.31.5.218
  4. D. C. Jones, A. J. Turner, A. M. Scott, S. M. Stone, R. G. Clark, C. Stace, and C. D. Stacey, "A multi-channel phase locked fibre bundle laser," Proc. SPIE 7580, 75801V (2010).
  5. T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, "Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km," Opt. Lett. 41, 840-843 (2016). https://doi.org/10.1364/OL.41.000840
  6. H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, and P. Zhou, "First experimental demonstration of coherent beam combining of more than 100 fiber lasers," Photonics Res. 8, 1943-1948 (2020). https://doi.org/10.1364/prj.409788
  7. L. A. Beresnev, R. A. Motes, K. J. Townes, P. Marple, K. Gurton, A. R. Valenzuela, C. Williamson, J. J. Liu, and C. Washer, "Design of a noncooled fiber collimator for compact, highefficiency fiber laser arrays," Appl. Opt. 56, B169-B178 (2017). https://doi.org/10.1364/AO.56.00B169
  8. L. Beresnev, A. Flores, R. Holten, A. Valenzuela, A. Taliaferro, A. Schweinsberg, K. Gurton, D. Ligon, C. Williamson, and S. Bilyk, "Multi-kW, uncooled densely packed fiber array for laser beam combining," in Proc. 2019 IEEE Research and Applications of Photonics in Defense Conference-RAPID (Miramar Beach, FL, USA, Aug. 19-21, 2019), pp. 1-4.
  9. Y. Kim, Y. Yun, H. Kim, H. Chang, J. Park, Y. Choe, J. Na, J. Yi, H. Kang, M. Yeo, K. Choi, Y. Noh, Y. Jeong, H. Lee, B. Yu, D. Yeom, and J. Jun, "3-channel tiled-aperture coherent-beam-combining system based on target-in-the-loop monitoring and SPGD algorithm," Korean J. Opt. Photonics 32, 1-8 (2021). https://doi.org/10.3807/KJOP.2021.32.1.001
  10. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D Goular, P. Bourdon, F. Druon, and P. Georges, "Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers," Opt. Lett. 36, 621-623 (2011). https://doi.org/10.1364/OL.36.000621
  11. M. Muller, C. Aleshire, A. Klenke, E. Haddad, F. Legare, A. Tunnermann, and J. Limpert, "10.4 kW coherently combined ultrafast fiber laser," Opt. Lett. 45, 3083-3086 (2020). https://doi.org/10.1364/ol.392843
  12. I. Fsaifes, L. Daniault, S. Bellanger, M. Veinhard, J. Bourderionnet, C. Larat, E. Lallier, E. Durand, A. Bringnon, and J.-C. Chanteloup, "Coherent beam combining of 61 femtosecond fiber amplifiers," Opt. Express 28, 20152-20161 (2020). https://doi.org/10.1364/oe.394031
  13. M. A. Vorontsov, T. Weyrauch, L. A. Beresnev, G. W. Carhart, L. Liu, and K. Aschenbach, "Adaptive array of phase-locked fiber collimators: Analysis and experimental demonstration," IEEE J. Sel. Top. Quantum Electron. 15, 269-280 (2009). https://doi.org/10.1109/JSTQE.2008.2010875
  14. D. Zhi, P. Ma, Y. Ma, X. Wang, P. Zhou, and L. Si, "Novel adaptive fiber-optics collimator for coherent beam combination," Opt. Express 22, 31520-31528 (2014). https://doi.org/10.1364/OE.22.031520
  15. D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, "Highly efficient coherent conformal projection system based on adaptive fiber optics collimator array," Sci. Rep. 9, 2783 (2019). https://doi.org/10.1038/s41598-019-39304-0
  16. C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, "Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control," Opt. Express. 21, 25045-25055 (2013). https://doi.org/10.1364/OE.21.025045
  17. Z. M. Huang, C. L. Liu, J. F. Li, and D. Y. Zhang, "A high-speed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm," Quantum Electron. 44, 301 (2014). https://doi.org/10.1070/qe2014v044n04abeh015230
  18. Z. Huang, X. Tang, D. Zhang, X. Wang, Q. Hu, J. Li, and C. Liu, "Coherent beam combination of ten fiber arrays via stochastic parallel gradient descent algorithm," J. Opt. Technol. 82, 16-20 (2015). https://doi.org/10.1364/JOT.82.000016
  19. M. A. Vorontsov and V. P. Sivokon, "Stochastic parallelgradient-descent technique for high-resolution wave-front phase-distortion correction," J. Opt. Soc. Am. A 15, 2745-2758 (1998). https://doi.org/10.1364/JOSAA.15.002745
  20. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, "Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application," IEEE J. Sel. Top. Quantum Electron. 15, 248-256 (2009). https://doi.org/10.1109/JSTQE.2008.2010231
  21. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
  22. V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). https://doi.org/10.1364/OE.21.004677
  23. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735- 17744 (2014). https://doi.org/10.1364/OE.22.017735
  24. C. Jun, M. Jung, W. Shin, B.-A. Yu, Y. S. Yoon, Y. Park, and K. Choi, "818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration," Laser Phys. Lett. 16, 015102 (2019). https://doi.org/10.1088/1612-202x/aaee11